找到 1 条结果
深度强化学习作为多能系统中能量流分析与优化的工具
Deep reinforcement learning as a tool for the analysis and optimization of energy flows in multi-energy systems
Andrea Franzos · Gabriele Fambr · Marco Badam · Energy Conversion and Management · 2025年1月 · Vol.341
摘要 深度强化学习算法不仅有助于开发优化的控制策略,而且可作为探索复杂问题并揭示非显而易见控制方案的有力工具。本文研究了深度强化学习在高比例可再生能源渗透条件下对多能系统进行优化的应用。关键的能量转换技术,如热电联产、电池储能系统、热泵和电转气技术,实现了不同能源网络之间的双向能量交换,从而促进了运行协同效应。由于这些互联关系导致各能源部门之间的相互依赖性,某一领域内的能量流动会显著影响其他领域的流动,因而增加了优化的复杂性。本研究旨在展示一种方法的优势,该方法可用于解读深度强化学习算法所实施的...
解读: 该深度强化学习优化方法对阳光电源多能源系统集成具有重要价值。研究验证了储能系统(ST系列PCS、PowerTitan)与热泵、电转气等多能转换技术的协同优化潜力,可降低15%天然气消耗和18%碳排放。建议将此算法框架应用于iSolarCloud平台,实现储能PCS与光伏逆变器(SG系列)的智能协调控...