找到 2 条结果
基于忆阻器的人工神经元革新类脑计算
Revolutionizing neuromorphic computing with memristor-based artificial neurons
Yanning Chen1Guobin Zhang2Fang Liu1Bo Wu1Yongfeng Deng1Dawei Gao2Yishu Zhang2 · 半导体学报 · 2025年1月 · Vol.46
随着传统冯·诺依曼架构在应对大数据与复杂计算任务时面临瓶颈,受人脑神经网络启发的类脑计算成为有前景的替代方案。易失性忆阻器,特别是莫特忆阻器和扩散型忆阻器,因其可模拟神经元的脉冲发放等动态特性,受到广泛关注,有望构建可重构、自适应的计算系统。近期研究已实现漏电积分-放电、霍奇金-赫胥黎、光电及时间表面神经元模型,显著提升了类脑系统的能效与集成度。本文综述基于易失性忆阻器的人工神经元最新进展,探讨其与人工突触集成的潜力,并指出提升器件可靠性与探索新架构是未来发展的关键挑战。
解读: 忆阻器类脑计算技术对阳光电源智能控制系统具有前瞻性价值。其低功耗、高并行的神经形态计算特性可应用于:1)PowerTitan储能系统的实时功率预测与能量管理,通过硬件神经网络实现毫秒级响应的负荷预测和削峰填谷优化;2)SG系列逆变器的MPPT算法加速,利用忆阻器阵列实现复杂光照条件下的快速最优点追踪...
基于可迁移代理模型与多目标优化的高效LDMOS设计
Efficient LDMOS Design via Transferable Surrogate Models and Multi-Objective Optimization
Hongyu Tang · Chenggang Xu · Xiaoyun Huang · Yuxuan Zhu 等6人 · IEEE Electron Device Letters · 2025年7月
优化横向双扩散金属氧化物半导体(LDMOS)性能需要在硅极限约束下平衡击穿电压(BV)和比导通电阻(<inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\text {R}_{\text {on},\text {sp}}$ </tex-math></inline-formula>)。...
解读: 从阳光电源的业务视角来看,这项基于机器学习的LDMOS优化技术具有重要的战略价值。LDMOS(横向双扩散金属氧化物半导体)器件是光伏逆变器和储能变流器中功率转换电路的核心元件,其击穿电压与导通电阻的平衡直接影响系统的效率、可靠性和成本。 该技术的核心创新在于利用深度神经网络替代传统TCAD仿真,将...