找到 2 条结果
一种近似哈密顿神经网络增强的多机电力系统励磁控制
A Nearly Hamiltonian Neural Network-Enhanced Multi-Machine Power System Excitation Control
Youbo Liu · Xuexin Wang · Gao Qiu · Zhiyuan Tang 等6人 · IEEE Transactions on Power Systems · 2025年6月
广义哈密顿系统理论(GHST)是高维非线性电力系统励磁控制的有力工具,但由于实际高阶系统解析不可行以及子模块不完整,该理论依赖降阶动态,从而导致控制误差。为解决这一问题,本文提出了一种基于近哈密顿神经网络(NHNN)的非线性励磁控制方法。该方法从测量数据中学习每台发电机的结构化哈密顿量,减轻了因降阶引起的哈密顿量实现误差。然后,通过组合这些哈密顿量,提出了一种保持系统响应的全局能量函数,用于稳定控制。在双机系统上的仿真结果表明,与广义哈密顿系统理论和PID控制方法相比,该方法提高了系统稳定性,平...
解读: 该近似哈密顿神经网络控制技术对阳光电源构网型储能系统具有重要应用价值。在PowerTitan大型储能系统并网场景中,传统哈密顿励磁控制虽能保证能量结构稳定性,但对参数摄动敏感。该研究提出的深度学习补偿方案可直接应用于ST系列储能变流器的GFM控制策略:通过神经网络实时补偿电网阻抗变化、负载扰动等不确...
基于卫星图像纹理特征与迁移学习的区域光伏功率预测优化高效方法
An efficient approach for regional photovoltaic power forecasting optimization based on texture features from satellite images and transfer learning
Yang Xi · Jianyong Zheng · Fei Mei · Gareth Taylor 等5人 · Applied Energy · 2025年1月 · Vol.385
准确高效的区域光伏发电功率预测对于提升光伏电力供应的稳定性并扩大其市场份额至关重要。近年来的研究进展已将卫星与地面观测数据的特征相结合,基于混合神经网络的模型展现出优异的预测性能。然而,仍存在若干挑战:直接从卫星图像中提取的空间特征往往缺乏细节,且大多数现有预测方法需要大量电力数据样本。因此,在云量变化速率较高的情况下,预测精度易受相位滞后的影响,同时由于区域光伏装置数量庞大且分布分散,计算负担也显著增加。为解决上述问题,本研究提出一种创新的时空特征,该特征将从卫星图像重构的纹理特征(TFs)与...
解读: 该区域光伏功率预测技术对阳光电源iSolarCloud智慧运维平台具有重要应用价值。通过卫星图像纹理特征与迁移学习结合,可显著提升SG系列逆变器集群的功率预测精度(RMSE提升72%)并降低相位滞后,特别适用于分布式光伏电站管理。该算法计算效率提升10倍,可与ST储能系统协同优化充放电策略,减少云层...