找到 1 条结果
面向绿色人工智能:基于深度学习与滤波技术的商用锂离子电池健康状态估计与退化分析的节能方法
Towards Green AI: Energy-Efficient State of Health Estimation and Degradation Analysis of Commercial Lithium-Ion Batteries Based on Deep Learning and Filter Technique Approach
Deepak Kumar · Mujeeb Ahmed · Majid Jamil · M. Rizwan 等5人 · IEEE Transactions on Industry Applications · 2025年9月
大型数据集中冗余的相似数据点会增加数据集的规模、存储量、内存使用量、训练时间和计算资源需求,导致深度学习(DL)模型效率显著降低。这些低效问题会降低模型性能并增加能耗。现有的基于深度学习的锂离子电池健康状态(SOH)估计方法常常面临计算需求高、精度低和能耗高等挑战。这些模型为了获得准确的结果需要消耗大量能量,从而导致更高的电力需求和碳足迹。因此,本文提出了一种基于冗余减少方法的新型过滤技术(FT)。该方法可提高数据集的质量,即减小数据集规模、降低内存利用率并减少能耗。将这种新型过滤技术与门控循环...
解读: 该节能型电池健康状态估计技术对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。通过滤波技术减少冗余数据,可显著降低BMS系统的计算负荷和能耗,特别适用于大规模储能电站的实时健康监测。该方法可集成至iSolarCloud云平台,实现边缘侧轻量化SOH估算与云端深度分析的协...