找到 1 条结果

排序:
光伏发电技术 SiC器件 深度学习 ★ 5.0

基于模糊神经网络作为数字孪生核心的光伏设施模型设计

Model design for photovoltaic facilities based on fuzzy neural network as core of its digital twin

William D.Chicaiza · Alex O.Top · Adolfo J.Sánchez · Juan M.Escaño 等5人 · Energy Conversion and Management · 2025年1月 · Vol.342

摘要 本研究提出了位于CIESOL-阿尔梅里亚的一个光伏(PV)设施数字孪生核心的构建方法。文中提出了两种建模方法:一种是基于等效电路的物理模型,另一种是基于自适应神经模糊推理系统(ANFIS)的数据驱动型神经模糊模型。该神经模糊模型被设计为灰箱系统,具有高可解释性和强适应性,并因其能够快速与物理实体同步,实现对数字孪生框架至关重要的实时行为建模而尤为突出。基于ANFIS的模型能够准确捕捉光伏系统的动态功率输出,适用于基于预测建模的能量管理策略集成。该模型表现出优异的预测性能,最坏情况下的平均绝...

解读: 该模糊神经网络数字孪生技术对阳光电源SG系列光伏逆变器和iSolarCloud平台具有重要应用价值。ANFIS灰盒模型实现0.99决定系数和16.37W平均绝对误差,可嵌入逆变器实时MPPT优化算法,提升发电效率。其低计算资源需求适配工业控制器,可增强iSolarCloud预测性运维能力,实现光储电...