找到 2 条结果

排序:
储能系统技术 ★ 5.0

基于射频溅射铝掺杂氧化锌的透明电化学电容器作为结构储能器件用于智能建筑中替代双层玻璃窗

RF-sputtered Al-doped ZnO-based transparent electrochemical capacitors developed as a structural energy storage to replace double-glazed window for a smart building

Febin Paul · United Kingdom · Vishnu Kalarikkal Narayanan · Prasutha Rani Markapudi · Applied Physics Letters · 2025年1月 · Vol.126

本文报道了一种采用射频溅射法制备的铝掺杂氧化锌(AZO)基透明电化学电容器,可作为结构化储能组件,用于替代智能建筑中的传统双层玻璃窗。该器件兼具高光学透过率和良好的电化学性能,能够在不影响采光的前提下实现能量存储功能。通过优化AZO薄膜的制备工艺,提升了导电性与循环稳定性,组装的透明电容器在可见光范围内平均透过率达70%以上,比电容达12.8 mF/cm²,并表现出优异的循环寿命。该研究为建筑集成储能系统提供了一种可行方案。

解读: 该透明电化学电容器技术为阳光电源建筑光储一体化方案提供创新思路。可与iSolarCloud平台结合,开发建筑集成储能系统(BESS):将透明储能窗与SG系列光伏逆变器、ST储能变流器协同控制,实现建筑外立面的发电-储能-用电一体化管理。AZO薄膜的高透光率(>70%)与电化学性能平衡,启发Power...

光伏发电技术 储能系统 SiC器件 工商业光伏 ★ 5.0

Al掺杂ZnO/碳纳米管双层结构对杂化太阳能电池光伏性能影响的研究

Investigation of ZnO:Al/carbon nanotubes bilayers effects on the photovoltaic performance of hybrid solar cells

Jorge Sastré-Hernández reports that financial support was provided by the National Polytechnic Institute Superior School of Physics · Mathematics. Patricia Maldonado Altamirano · Jesús Adrián Núñez Membrillo report that financial support was provided by Consejo Nacional de Humanidades Ciencia y Tecnología. Rogelio Mendoza-Pérez reports that financial support was provided by Autonomous University of Mexico City—San Lorenzo Tezonco Campus. Jorge Sastré-Hernández reports that financial support was provided by Instituto Politécnico Nacional · Secretaría de Investigación y Posgrado. Jorge Ricardo Aguilar-Hernandez reports that financial support was provided by Instituto Politécnico Nacional 等7人 · Journal of Materials Science: Materials in Electronics · 2025年1月 · Vol.36.0

本文研究了商用单壁碳纳米管(SWCNTs)和通过微波法合成、并在铝掺杂氧化锌(ZnO:Al,AZO)衬底上采用喷涂法处理的多壁碳纳米管(MWCNTs)的物理特性,并探讨了其作为CdTe基杂化太阳能电池中透明前电极或电子传输层的潜在应用。透明导电AZO薄膜在高真空腔体内通过射频(RF)磁控溅射系统在室温下沉积而成。所制备的AZO/碳纳米管双层结构通过扫描电子显微镜、拉曼光谱、紫外-可见分光光度计以及四探针法等表征技术进行了分析。结果表明,与纯AZO衬底相比,AZO/SWCNTs双层结构的电学性能得...

解读: 该AZO/碳纳米管双层透明电极技术对阳光电源SG系列光伏逆变器及组件集成方案具有重要参考价值。研究显示双层结构可降低电阻率至6.8×10⁻²Ω·cm并保持87%透光率,有效提升电子传输效率并抑制载流子复合,这与我司1500V高压系统对前端电极低损耗、高透过率的需求高度契合。碳纳米管导电通路优化机制可...