找到 1 条结果
融合ConvLSTM网络:使用时空特征增加居民负荷预测范围
Fusion ConvLSTM-Net: Using Spatiotemporal Features to Increase Residential Load Forecast Horizon
Abhishu Oza · Dhaval K. Patel · Bryan J. Ranger · IEEE Access · 2025年1月
电力系统正经历向可再生能源技术的重大转型。为充分利用这些能源,优化能源生成、存储和分配可通过未来能源消耗的准确预测增强。预测单个居民负荷在负荷平衡中发挥关键作用,但由于个人消费模式的不规则性质保持挑战。此外当前文献限于仅预测居民负荷到未来几小时。本文提出融合ConvLSTM网络,一种结合空间和时间特征的新型融合编码器-解码器架构,将负荷预测扩展到完整24小时周期。通过以下方式评估模型对比多个基准神经网络模型:1)测试1.5到24小时不同预测窗口大小,2)评估多户模型性能,3)通过聚合100户预测...
解读: 该居民负荷预测技术对阳光电源户用光伏储能系统具有重要应用价值。阳光户用储能系统需要精准的24小时负荷预测来优化光储协同控制策略,该融合ConvLSTM网络可显著提升预测精度和时间范围。阳光可将该技术集成到户用储能EMS系统,实现日前优化调度,提升光伏自发自用比例,降低用户电费,提高系统经济性,增强用...