找到 2 条结果
基于转置Transformer模型的电化学储能自适应SOH估计方法
An Adaptive SOH Estimation Method for Electrochemical Energy Storage Based on Transposed Transformer Model
李鹏 · 葛儒哲 · 董存 · 孙树敏 等6人 · 高电压技术 · 2025年6月 · Vol.51
为保障锂离子电池运行的可靠性与安全性,及时监测其健康状态,本文在Autoformer与iTransformer模型基础上,融合线性回归模型,提出一种基于转置Transformer的自适应特征感知电池健康状态融合估计模型。通过提取充电曲线健康因子,将容量退化分解为趋势项与再生项,分别由线性回归和转置Transformer模型进行预测与估计,结合二者输出获得最终容量退化趋势。利用注意力权重增强模型可解释性。实验结果表明,该方法在NASA数据集上预测误差显著低于其他时序模型,验证了其精度与可靠性,为电...
解读: 该转置Transformer自适应SOH估计技术对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。通过将容量退化分解为趋势项与再生项的混合建模方法,可显著提升iSolarCloud云平台的电池健康状态监测精度,实现更准确的预测性维护。该方法基于充电曲线健康因子提取,可无...
基于注意力机制与并行预测架构的光伏发电功率预测框架
A photovoltaic power forecasting framework based on Attention mechanism and parallel prediction architecture
Zhengda Zhou · Yeming Dai · Mingming Leng · Applied Energy · 2025年1月 · Vol.391
摘要 光伏发电易受气象条件随机波动特性的影响,因此准确可靠地预测光伏发电功率具有重要意义。本文提出了一种新型混合预测框架(注意力机制-扩张因果卷积-双向长短期记忆网络-自回归模型,ADBA模型),用于超短期光伏发电功率预测。该框架结合了注意力机制、精心设计的并行预测架构,以及线性自回归(AR)组件和非线性扩张因果卷积-双向长短期记忆网络(DCC-BiLSTM)组件。首先,利用注意力机制根据输入变量的相对重要性分配权重,以优化多变量时间序列。其次,将优化后的数据分别输入并行架构中的线性和非线性组件...
解读: 该光伏功率预测框架对阳光电源iSolarCloud智能运维平台具有重要应用价值。其Attention-DCC-BiLSTM-AR混合架构可集成至SG系列逆变器的预测性维护系统,通过注意力机制优化多元气象数据输入,并行处理线性与非线性特征,显著提升超短期功率预测精度。该技术可增强1500V系统的MPP...