← 返回
光伏发电技术
★ 5.0
基于注意力机制与并行预测架构的光伏发电功率预测框架
A photovoltaic power forecasting framework based on Attention mechanism and parallel prediction architecture
| 作者 | Zhengda Zhou · Yeming Dai · Mingming Leng |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 391 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A novel power forecasting framework with parallel architecture combining linear and nonlinear components is proposed. |
语言:
中文摘要
摘要 光伏发电易受气象条件随机波动特性的影响,因此准确可靠地预测光伏发电功率具有重要意义。本文提出了一种新型混合预测框架(注意力机制-扩张因果卷积-双向长短期记忆网络-自回归模型,ADBA模型),用于超短期光伏发电功率预测。该框架结合了注意力机制、精心设计的并行预测架构,以及线性自回归(AR)组件和非线性扩张因果卷积-双向长短期记忆网络(DCC-BiLSTM)组件。首先,利用注意力机制根据输入变量的相对重要性分配权重,以优化多变量时间序列。其次,将优化后的数据分别输入并行架构中的线性和非线性组件进行预测。非线性预测组件采用DCC-BiLSTM组合结构实现,能够在提取空间和时间特征方面发挥互补优势。随后,将提取的特征输入特征映射层,获得非线性拟合结果。线性预测组件则通过统计学AR模型实现,可缓解神经网络相关的尺度敏感问题,并提供线性拟合结果。这种并行预测架构使得混合框架能够同时建模历史发电功率时间序列中的线性与非线性特征。最后,将两个组件的预测结果进行集成,得到最终的预测输出。实验结果表明:所提出的模型在预测精度和鲁棒性方面 consistently 优于基准模型,在不同站点、不同季节以及不同预测时间范围下均表现出最优的预测性能。
English Abstract
Abstract Photovoltaic power generation is susceptible to the stochastic volatility characteristics of meteorological conditions , so it is of great significance to forecast the photovoltaic power generation accurately and reliably. This paper proposes a novel hybrid forecasting framework (Attention-DCC-BiLSTM-AR model, ADBA model) for ultra-short-term photovoltaic power prediction, which combines the Attention mechanism and a well-designed parallel prediction architecture with linear Autoregressive (AR) component and nonlinear Dilated Causal Convolution-Bidirectional Long Short-Term Memory network (DCC-BiLSTM) component. Firstly, Attention mechanism is employed to assign weights to input variables according to their relative importance, so as to optimize the multivariate time series. Secondly, the optimized data is fed into linear and nonlinear components of the parallel architecture for prediction, respectively. The nonlinear prediction component is implemented by a combined DCC-BiLSTM structure, which has complementary strength in extracting spatial and temporal features. Subsequently, the extracted features are fed into feature mapping layers to obtain the nonlinear fitting results. The linear prediction component is implemented by a statistical AR model, which can mitigate the scale sensitivity problem associated with neural networks and provide the linear fitting results. This parallel prediction architecture enables the hybrid framework to model both linear and nonlinear characteristics of historical power generation time series simultaneously. Finally, the prediction results of two components are integrated to obtain the final prediction result. Experimental results demonstrate that: the proposed model consistently outperforms benchmark models in terms of forecasting accuracy and robustness, and has shown the most superior prediction performance on different sites, different seasons, and different prediction time horizons.
S
SunView 深度解读
该光伏功率预测框架对阳光电源iSolarCloud智能运维平台具有重要应用价值。其Attention-DCC-BiLSTM-AR混合架构可集成至SG系列逆变器的预测性维护系统,通过注意力机制优化多元气象数据输入,并行处理线性与非线性特征,显著提升超短期功率预测精度。该技术可增强1500V系统的MPPT优化策略,配合ST系列储能PCS实现更精准的充放电调度,降低功率波动对电网的冲击。其跨季节、跨站点的鲁棒性表现为大规模光储电站群的智能调度提供算法支撑,助力阳光电源构建更智能的能源管理生态。