找到 1 条结果
机制对AI识别振荡源是否重要?一个案例研究
Are Mechanisms Important for AI to Identify Oscillation Sources? A Case Study
Peili Liu · Wenjuan Du · Qiang Fu · Haifeng Wang · IEEE Transactions on Sustainable Energy · 2025年9月
并网风力发电机组可能引发电力系统次同步振荡(SSO)。由于难以获取机组详细参数,基于数据驱动的AI方法被视为识别振荡源的潜在手段。然而,风电系统中的SSO机制较传统系统更为复杂多样,而现有AI研究多基于单一机制数据进行训练与验证,忽视了实际中不同甚至未知机制的存在。本文通过负阻尼与开环模态谐振两类典型SSO机制的案例研究,初步探讨机制对AI识别振荡源的影响,并开展可解释性分析。结果揭示了AI模型在不同机制下的泛化能力差异,为AI在SSO源识别中的应用提供了深入洞见。
解读: 该研究对阳光电源的储能和风电变流器产品线具有重要参考价值。针对ST系列储能变流器和风电变流器的GFM/GFL控制系统,可借鉴文中AI识别SSO源的方法,提升系统对不同振荡机制的适应性。特别是在大规模新能源并网场景下,通过AI辅助快速识别振荡源,可增强产品的电网友好性。建议在PowerTitan等大型...