← 返回
风电变流技术
★ 5.0
机制对AI识别振荡源是否重要?一个案例研究
Are Mechanisms Important for AI to Identify Oscillation Sources? A Case Study
| 作者 | Peili Liu · Wenjuan Du · Qiang Fu · Haifeng Wang |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2025年9月 |
| 技术分类 | 风电变流技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 风力发电机组 次同步振荡 数据驱动AI方法 振荡源识别 振荡机制 |
语言:
中文摘要
并网风力发电机组可能引发电力系统次同步振荡(SSO)。由于难以获取机组详细参数,基于数据驱动的AI方法被视为识别振荡源的潜在手段。然而,风电系统中的SSO机制较传统系统更为复杂多样,而现有AI研究多基于单一机制数据进行训练与验证,忽视了实际中不同甚至未知机制的存在。本文通过负阻尼与开环模态谐振两类典型SSO机制的案例研究,初步探讨机制对AI识别振荡源的影响,并开展可解释性分析。结果揭示了AI模型在不同机制下的泛化能力差异,为AI在SSO源识别中的应用提供了深入洞见。
English Abstract
Grid-connected wind turbine generators (WTGs) may induce sub-synchronous oscillations (SSOs) in a power system. Due to the difficulty to gain the detailed parameters of the WTGs in practice, data-driven AI method is considered to be a potential solution to identify the trouble-making WTGs (or SSO sources) in the power system. Unlike the SSO mechanism observed in traditional power systems, numerous studies and real-world SSO events have indicated that the SSO mechanisms in wind power grid-connected systems can be more complex and varied. However, most AI-based works ignore the fact that the SSO can arise from different mechanisms. Typically, AI models are trained and evaluated using data generated from a single type of SSO mechanism. However, in practice, AI models may need to identify the sources of SSOs caused by different or even unknown mechanisms. This raises an interesting question: Are mechanisms important for AI to identify oscillation sources? This paper preliminarily explores the answer to this question by study cases that consider two general SSO mechanisms: negative resistance and open-loop modal resonance. Further explainability analysis is carried out to investigate whether the SSO mechanisms affect the performance of the AI models. Results of study cases and explainability analysis provide researchers and engineers with deeper insights into the generalization ability of AI with respect to SSO mechanisms.
S
SunView 深度解读
该研究对阳光电源的储能和风电变流器产品线具有重要参考价值。针对ST系列储能变流器和风电变流器的GFM/GFL控制系统,可借鉴文中AI识别SSO源的方法,提升系统对不同振荡机制的适应性。特别是在大规模新能源并网场景下,通过AI辅助快速识别振荡源,可增强产品的电网友好性。建议在PowerTitan等大型储能系统中植入基于多机制的振荡源识别算法,并结合iSolarCloud平台实现智能预警。这将提升阳光电源产品在复杂电网环境下的稳定性和可靠性,形成差异化竞争优势。