找到 2 条结果

排序:
功率器件技术 SiC器件 ★ 5.0

基于Koopman算子的物理信息数据驱动可再生能源主导电力系统振荡抑制策略

Physics Informed Data-Driven Oscillation Stabilization Strategy for Renewable-Dominant Power Systems Based on Koopman Operator

Zihan Wang · Gengyin Li · Ziyang Huang · Xiaonan Zhang 等6人 · IEEE Transactions on Industry Applications · 2025年1月

随着波动性可再生能源发电(REGs)的高比例接入,振荡现象在全球范围内频繁出现。与传统电力系统中的低频振荡不同,以可再生能源为主导的电力系统中的振荡频率更高,涉及更多非线性因素,严重威胁着系统的稳定运行。振荡稳定控制设计的主要技术挑战在于以可再生能源为主导的电力系统具有非线性、复杂性,且难以获取其模型。为应对这一范式转变,本文提出了一种基于柯普曼算子(KO)的物理信息驱动的数据驱动振荡稳定控制(PDOS)策略,该策略具有强可解释性和高计算效率的优点。首先,基于柯普曼算子实现了非线性动态的全局线性...

解读: 从阳光电源的业务视角来看,这项基于Koopman算子的物理信息驱动振荡稳定技术具有重要的战略价值。随着全球新能源渗透率持续攀升,我们在实际项目中已观察到高频振荡问题日益突出,这与传统电力系统的低频振荡特性存在本质差异,对我们的光伏逆变器和储能系统控制策略提出了新挑战。 该技术的核心价值在于通过Ko...

储能系统技术 储能系统 ★ 5.0

数据驱动策略:一种基于混合特征与自编码器的短路故障电池异常检测鲁棒方法

Data-driven strategy: A robust battery anomaly detection method for short circuit fault based on mixed features and autoencoder

Hongyu Zhao · Chengzhong Zhang · Chenglin Liao · Liye Wang 等6人 · Applied Energy · 2025年1月 · Vol.382

摘要 锂离子电池短路(SC)故障的异常检测对于保障储能系统的安全至关重要。相较于电池组层面的故障诊断,单体电池的故障诊断缺乏参考对象,导致难以有效判断是否存在异常。本文提出了一种基于自编码器策略的数据驱动检测方法,用于在无电池包信息条件下实现电池故障的早期检测。该方法利用自编码器策略对电压进行重构,以识别潜在故障;并通过生成对抗网络(GAN)框架进行模型训练,降低模型过拟合风险,提升检测效率。此外,在异常检测过程中,由于缺乏电池组的参考信息,电流变化可能引起某些异常电压波动,从而导致误诊。为解决...

解读: 该基于自编码器的电池短路故障检测技术对阳光电源ST系列储能变流器及PowerTitan系统具有重要应用价值。通过混合特征输入和等效电路模型参数,可将单体电池异常检测时间缩短至1.6小时内,显著提升储能系统安全性。该数据驱动方法可集成至iSolarCloud平台,增强预测性维护能力,降低误诊率。对充电...