← 返回
数据驱动策略:一种基于混合特征与自编码器的短路故障电池异常检测鲁棒方法
Data-driven strategy: A robust battery anomaly detection method for short circuit fault based on mixed features and autoencoder
| 作者 | Hongyu Zhao · Chengzhong Zhang · Chenglin Liao · Liye Wang · Weilong Liu · Lifang Wang |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 382 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | An autoencoder strategy is used to detect short-circuit faults without battery pack information. |
语言:
中文摘要
摘要 锂离子电池短路(SC)故障的异常检测对于保障储能系统的安全至关重要。相较于电池组层面的故障诊断,单体电池的故障诊断缺乏参考对象,导致难以有效判断是否存在异常。本文提出了一种基于自编码器策略的数据驱动检测方法,用于在无电池包信息条件下实现电池故障的早期检测。该方法利用自编码器策略对电压进行重构,以识别潜在故障;并通过生成对抗网络(GAN)框架进行模型训练,降低模型过拟合风险,提升检测效率。此外,在异常检测过程中,由于缺乏电池组的参考信息,电流变化可能引起某些异常电压波动,从而导致误诊。为解决这一问题,本文提出了混合特征输入方法,引入等效电路模型参数,以降低误诊率。实验结果表明,所提出的方法能够准确检测短路故障,尤其可在1.6小时内检测出部分中度或轻微故障。与其他方法相比,该方法具有更优的有效性和鲁棒性。本文提出的方法契合大数据时代的发展趋势,为储能安全技术的发展开辟了新的研究视角。
English Abstract
Abstract The anomaly detection of lithium-ion batteries for short circuit (SC) faults is crucial to ensure the safety of the energy storage system . Compared to the diagnosis fault of packs, individual cell fault diagnosis lacks a reference target, leading to difficulties in effectively detecting whether an abnormality exists. In this paper, a data-driven detection method based on the autoencoder strategy is proposed for early detection of battery faults without pack information. Within, the autoencoder strategy is used to reconstruct the voltage and detect potential faults. Using the generative adversarial network (GAN) framework for model training reduces its overfitting and improves efficiency. In addition, during anomaly detection, due to the lack of battery pack reference, some abnormal voltage changes due to current variations can lead to misdiagnosis. To address this concern, the mixed features input is proposed to reduce the misdiagnosis rate, which incorporates the equivalent circuit model parameters. Experiments demonstrate that the proposed method can accurately detect SC faults, in particular, it can detect some moderate or weak faults within 1.6 h. Compared to other methods, this method has better effectiveness and robustness. The method proposed in this paper is in line with the development trend for big data and opens up new perspectives for the development of energy storage safety technology.
S
SunView 深度解读
该基于自编码器的电池短路故障检测技术对阳光电源ST系列储能变流器及PowerTitan系统具有重要应用价值。通过混合特征输入和等效电路模型参数,可将单体电池异常检测时间缩短至1.6小时内,显著提升储能系统安全性。该数据驱动方法可集成至iSolarCloud平台,增强预测性维护能力,降低误诊率。对充电桩产品的电池监测及ESS解决方案的BMS优化具有直接借鉴意义,符合阳光电源大数据智能运维战略方向。