找到 2 条结果

排序:
电动汽车驱动 ★ 5.0

关态常闭型硼掺杂金刚石MOSFET器件击穿电压超过1.7 kV

Normally-off boron-doped diamond MOSFETs with a breakdown voltage over 1.7 kV

作者未知 · Applied Physics Letters · 2025年1月 · Vol.127

在150 nm厚的外延层上制备了硼掺杂金刚石(B-diamond)金属-氧化物-半导体场效应晶体管(MOSFET)。测得其阈值电压为-8.0 V,表现出关态常闭特性。由于硼掺杂剂的高电离能及较薄的外延层,B-diamond中形成的空穴数量有限,且可能被Al2O3/B-diamond界面捕获,导致器件呈现常闭行为。该B-diamond MOSFET的绝对击穿电压超过1.7 kV,在栅-漏电极间距为11.3 μm时,计算得到击穿电场达1.52 MV/cm,超过以往同类器件两倍以上。

解读: 该常闭型金刚石MOSFET技术对阳光电源功率器件应用具有前瞻价值。1.7kV击穿电压和1.52MV/cm击穿电场强度显著超越现有SiC器件性能,可应用于ST系列储能变流器和SG系列光伏逆变器的高压功率模块设计。金刚石材料的超宽禁带特性(5.5eV)可实现更高工作温度和更低导通损耗,优化三电平拓扑效率...

储能系统技术 ★ 5.0

Mn2+掺杂对0.94Bi0.5Na0.5TiO3–0.06BaTiO3陶瓷储能性能的影响

The effects of Mn2+ doping on energy storage properties of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics

The Mn2+-doped 0.94Bi0.5Na0.5Ti(1− _x_)Mn_x_O3-0.06BaTiO3 (BNTM _x_-BT · Journal of Materials Science: Materials in Electronics · 2025年1月 · Vol.36.0

采用传统固相法制备了Mn2+掺杂的0.94Bi0.5Na0.5Ti(1−x)MnxO3-0.06BaTiO3(BNTMx-BT,x = 0.00 ~ 0.06)体系。XPS结果表明,部分掺杂进入BNT-BT陶瓷中的Mn2+转变为较高价态的Mn3+和Mn4+,导致陶瓷中吸附氧含量增加,同时氧空位浓度降低。因此,Mn2+的掺杂显著降低了陶瓷的漏电流。介电温谱显示,Mn2+的掺杂削弱了Ts介电峰,并使Tm峰表现出更明显的频率弥散性,这有利于增强陶瓷的弛豫特性。在1125 °C烧结的陶瓷中,当x = 0...

解读: 该Mn掺杂BNT-BT陶瓷材料研究对阳光电源储能系统具有重要参考价值。通过离子掺杂降低漏电流、优化介电弛豫特性的技术路径,可应用于ST系列PCS的薄膜电容器优化设计。材料储能密度0.51 J/cm³虽不及现有方案,但其温度稳定性改善思路可启发PowerTitan储能系统中无源器件的热管理策略。掺杂调...