找到 1 条结果

排序:
储能系统技术 储能系统 SiC器件 深度学习 ★ 5.0

基于软Actor-Critic算法的强化学习控制器改进交错并联DC-DC升压变换器电压调节

Improving Voltage Regulation of Interleaved DC-DC Boost Converter via Soft Actor-Critic Algorithm Based Reinforcement Learning Controller

Jian Ye · Di Zhao · Xuewei Pan · Sinan Li 等6人 · IEEE Journal of Emerging and Selected Topics in Power Electronics · 2025年5月

本文提出采用基于软Actor-Critic(SAC)算法的强化学习(RL)控制器作为三相交错并联DC-DC升压变换器的唯一主控制器,以提升输出电压的动态性能。阐述了最大熵学习的优势及SAC算法原理,给出了神经网络结构与奖励函数的设计方案。SAC智能体经离线训练后,在工作点处进行稳定性分析,并在物理平台上部署测试。与现有方法的对比表明,该方法显著提升了变换器的电压控制能力,且对参数、参考值及负载变化具有强鲁棒性。

解读: 该SAC强化学习控制技术对阳光电源DC-DC变换器产品具有重要应用价值。在ST系列储能变流器中,交错并联Boost拓扑广泛用于电池侧DC-DC升压环节,该方法可显著提升电压动态响应速度和参数鲁棒性,优化储能系统功率爬坡能力。在车载OBC充电机中,面对电池SOC变化和负载突变工况,SAC算法的最大熵学...