找到 1 条结果 · IEEE Transactions on Sustainable Energy

排序:
光伏发电技术 SiC器件 多物理场耦合 深度学习 ★ 4.0

SolarFusionNet:通过自动多模态特征选择与跨模态融合增强太阳辐照度预测

SolarFusionNet: Enhanced Solar Irradiance Forecasting via Automated Multi-Modal Feature Selection and Cross-Modal Fusion

Tao Jing · Shanlin Chen · David Navarro-Alarcon · Yinghao Chu 等5人 · IEEE Transactions on Sustainable Energy · 2024年10月

太阳能预测是缓解间歇性光伏发电对电网负面影响的有效技术。尽管已有多种深度学习方法用于太阳辐照度预测,但在超短期区域预测中,多模态特征的自动选择与综合融合研究仍显不足。本文提出SolarFusionNet,一种融合自动多模态特征选择与跨模态数据融合的新型深度学习模型。该模型设计了两类自动特征选择单元,分别提取多通道卫星图像与多变量气象数据的关键特征,并采用三种循环层捕捉长期依赖关系。特别地,引入高斯核卷积长短期记忆网络以提取光流云运动场中的稀疏特征。进一步提出基于物理逻辑依赖的分层多头跨模态自注意...

解读: 该多模态太阳辐照度预测技术对阳光电源iSolarCloud智能运维平台具有重要应用价值。SolarFusionNet融合卫星图像与气象数据的4小时超短期预测能力(技能达37.4%-47.6%),可直接应用于SG系列光伏逆变器的MPPT算法优化,提前调整功率跟踪策略;对PowerTitan储能系统的能...