找到 2 条结果 · IEEE Transactions on Sustainable Energy

排序:
储能系统技术 储能系统 SiC器件 微电网 ★ 5.0

基于信息物理跨空间认知与协同的多微网直流配电网络有功功率控制

Active Power Control for DC Distribution Network With Multiple Microgrids Based on Cyber-Physical Cross-Space Understanding and Cooperation

Bo Zhang · Dong Yue · Chunxia Dou · Dongmei Yuan 等6人 · IEEE Transactions on Sustainable Energy · 2025年8月

在直流配电网络中,大量分布式资源以互联微网形式接入,以挖掘信息物理融合下的资源调节潜力。然而,物理不确定性(如出力波动)与信息不确定性(如通信拥塞)易叠加引发严重的有功功率波动。为此,分别从微网层和资源层研究基于信息物理跨空间认知与协同的有功功率控制方法。针对微网层,提出依赖潮流约束的集中式控制方法生成最优指令,并设计需求驱动的网络匹配机制保障通信可靠性;针对资源层,提出组合式容错控制策略以应对外部扰动,并设计双层优化策略支持即插即用场景下的多场景灵活调控。最后通过算例验证所提方法的有效性。

解读: 该信息物理跨空间协同控制技术对阳光电源多微网储能系统具有重要应用价值。针对PowerTitan大型储能系统的多站点协同场景,文章提出的集中式潮流约束优化方法可直接应用于ST系列储能变流器的功率分配策略,解决多储能站点间的有功功率波动问题。需求驱动的网络匹配机制可增强iSolarCloud云平台在通信...

储能系统技术 储能系统 深度学习 强化学习 ★ 5.0

受脑启发的协作式自动发电控制与大规模电动汽车集成

Brain-Inspired Collaborative Automatic Generation Control With Large-Scale Electric Vehicles Integration

Zhihong Liu · Lei Xi · Yue Quan · Chen Cheng 等5人 · IEEE Transactions on Sustainable Energy · 2024年10月

分布式能源、负荷与储能设备具有间歇性和强随机性,接入电网后易引发显著的频率波动。现有基于多智能体协同神经网络的控制算法易遭遇灾难性遗忘问题,难以在强随机扰动下实现最优控制。本文提出一种基于正交权重修正策略网络更新的近端受脑启发策略优化(PBPO)算法,赋予网络类脑上下文感知能力,从而加速多区域协同控制的收敛速度,有效抑制电网严重随机扰动引起的频率波动。通过大规模电动汽车接入场景下的两个负荷频率控制模型仿真验证,所提PBPO算法在收敛速度、频率稳定性及控制性能方面均优于多种强化学习算法。

解读: 该脑启发协同控制技术对阳光电源储能与充电桩产品具有重要应用价值。针对PowerTitan大型储能系统参与电网AGC调频场景,PBPO算法的抗遗忘特性可显著提升多储能站点协同响应能力,解决ST系列储能变流器在强随机扰动下的频率稳定问题。对于新能源汽车业务,该算法可优化大规模充电桩V2G协同控制策略,实...