找到 1 条结果 · IEEE Transactions on Sustainable Energy
受脑启发的协作式自动发电控制与大规模电动汽车集成
Brain-Inspired Collaborative Automatic Generation Control With Large-Scale Electric Vehicles Integration
Zhihong Liu · Lei Xi · Yue Quan · Chen Cheng 等5人 · IEEE Transactions on Sustainable Energy · 2024年10月
分布式能源、负荷与储能设备具有间歇性和强随机性,接入电网后易引发显著的频率波动。现有基于多智能体协同神经网络的控制算法易遭遇灾难性遗忘问题,难以在强随机扰动下实现最优控制。本文提出一种基于正交权重修正策略网络更新的近端受脑启发策略优化(PBPO)算法,赋予网络类脑上下文感知能力,从而加速多区域协同控制的收敛速度,有效抑制电网严重随机扰动引起的频率波动。通过大规模电动汽车接入场景下的两个负荷频率控制模型仿真验证,所提PBPO算法在收敛速度、频率稳定性及控制性能方面均优于多种强化学习算法。
解读: 该脑启发协同控制技术对阳光电源储能与充电桩产品具有重要应用价值。针对PowerTitan大型储能系统参与电网AGC调频场景,PBPO算法的抗遗忘特性可显著提升多储能站点协同响应能力,解决ST系列储能变流器在强随机扰动下的频率稳定问题。对于新能源汽车业务,该算法可优化大规模充电桩V2G协同控制策略,实...