找到 2 条结果 · IEEE Transactions on Sustainable Energy

排序:
储能系统技术 储能系统 ★ 5.0

考虑跨季节钻孔热能储存的混合可再生能源-CCHP系统容量优化规划

Optimal Capacity Planning of Hybrid Renewable Energy - CCHP System Considering Inter Seasonal Borehole Thermal Energy Storage

Yuan Du · Yixun Xue · Lei Chen · Mohammad Shahidehpour 等6人 · IEEE Transactions on Sustainable Energy · 2025年5月

冷热电三联供(CCHP)系统能源利用效率高,通常超过80%。然而,传统CCHP依赖微型燃气轮机,导致碳排放问题。本文设计了一种混合可再生能源-CCHP系统,电力负荷由光伏与风电提供,冷热负荷通过热泵电转热满足。针对可再生能源的季节性波动,引入钻孔热能储存(BTES),将夏季多余能量储于地下供冬季使用。构建了基于决策相关不确定性的两阶段鲁棒优化模型,并采用改进的Benders分解算法求解。通过中国鄂尔多斯实际案例验证方法有效性,分析了BTES集成、不确定性预算及可再生能源比例的影响。

解读: 该混合可再生能源-CCHP系统与阳光电源多产品线深度契合。钻孔热能储存(BTES)的跨季节储能理念可启发ST系列储能系统开发长周期储能解决方案,突破现有电化学储能的时长限制。两阶段鲁棒优化模型可直接应用于PowerTitan大型储能系统的容量配置优化,提升光伏-风电-储能混合系统的经济性。热泵电转热...

储能系统技术 储能系统 深度学习 强化学习 ★ 5.0

受脑启发的协作式自动发电控制与大规模电动汽车集成

Brain-Inspired Collaborative Automatic Generation Control With Large-Scale Electric Vehicles Integration

Zhihong Liu · Lei Xi · Yue Quan · Chen Cheng 等5人 · IEEE Transactions on Sustainable Energy · 2024年10月

分布式能源、负荷与储能设备具有间歇性和强随机性,接入电网后易引发显著的频率波动。现有基于多智能体协同神经网络的控制算法易遭遇灾难性遗忘问题,难以在强随机扰动下实现最优控制。本文提出一种基于正交权重修正策略网络更新的近端受脑启发策略优化(PBPO)算法,赋予网络类脑上下文感知能力,从而加速多区域协同控制的收敛速度,有效抑制电网严重随机扰动引起的频率波动。通过大规模电动汽车接入场景下的两个负荷频率控制模型仿真验证,所提PBPO算法在收敛速度、频率稳定性及控制性能方面均优于多种强化学习算法。

解读: 该脑启发协同控制技术对阳光电源储能与充电桩产品具有重要应用价值。针对PowerTitan大型储能系统参与电网AGC调频场景,PBPO算法的抗遗忘特性可显著提升多储能站点协同响应能力,解决ST系列储能变流器在强随机扰动下的频率稳定问题。对于新能源汽车业务,该算法可优化大规模充电桩V2G协同控制策略,实...