找到 2 条结果 · IEEE Transactions on Sustainable Energy

排序:
风电变流技术 ★ 5.0

近额定风速区大型风力机转子推力控制

Rotor Thrust Control for Large-Scale Wind Turbine in Near-Rated Wind Speed Region

Jiaqi Li · Siyuan Fan · Hua Geng · IEEE Transactions on Sustainable Energy · 2025年5月

为限制近额定风速区转子推力的最大值,本文提出一种适用于大型风力机的新型转子推力控制方案,包含推力辨识器、推力控制回路及前馈变桨控制器。基于叶素动量理论,通过简化叶片模型利用叶根面外弯矩实现转子推力在线辨识,并构建推力反馈控制环。进一步设计基于非线性动态逆的最小变桨饱和器(NDI-PS)作为前馈控制器,通过对推力系数曲线进行非线性动态逆实现变桨前馈补偿。仿真结果表明,所提方案在提升1%~1.5%发电功率的同时,叶根与塔底载荷降低约4%,性能优于NREL与金风现有控制器。

解读: 该研究的转子推力控制方案对阳光电源风电变流器产品线具有重要参考价值。其中推力辨识和非线性动态逆控制的思路可应用于我司SG系列风电变流器的控制算法优化,特别是在功率优化和载荷控制方面。通过引入类似的推力反馈控制环和前馈补偿机制,可提升风电变流器在近额定风速区的发电效率和可靠性。该技术还可与iSolar...

风电变流技术 深度学习 ★ 5.0

基于SCADA数据的周期增强型Informer模型用于短期风电功率预测

Periodic-Enhanced Informer Model for Short-Term Wind Power Forecasting Using SCADA Data

Zhao-Hua Liu · Long-Wei Li · Hua-Liang Wei · Ming Li 等6人 · IEEE Transactions on Sustainable Energy · 2025年4月

针对风电场SCADA系统提供的丰富运行与环境数据,提出一种周期增强型Informer模型用于短期风电功率预测。首先,采用基于v-p曲线与四分位法结合的方法滤除稀疏离群点,并利用DBSCAN算法去除功率曲线中的聚集噪声;其次,基于最大信息系数筛选多特征输入集以提升数据利用效率;进而设计时序卷积网络提取输入特征的标量投影,并融合局部与全局时间戳构建周期信息增强的嵌入层;最后,在Informer模型中引入多尺度深度融合模块,实现跨时间尺度特征的深层整合,有效避免了模型加深带来的资源浪费与过拟合问题。实...

解读: 该周期增强型Informer模型对阳光电源的智能运维和储能系统具有重要应用价值。首先,该模型的多特征输入与时序预测技术可直接应用于iSolarCloud平台的发电预测模块,提升风光储多能互补系统的调度效率。其次,模型的周期性特征提取方法可优化ST系列储能变流器的能量管理策略,特别是在PowerTit...