找到 1 条结果 · IEEE Transactions on Sustainable Energy
基于图的大规模概率光伏功率预测方法:对时空缺失数据不敏感
Graph-Based Large Scale Probabilistic PV Power Forecasting Insensitive to Space-Time Missing Data
Keunju Song · Minsoo Kim · Hongseok Kim · IEEE Transactions on Sustainable Energy · 2024年8月
近年来,集成分布式能源的电力系统被用于应对气候变化,但也增加了系统的不确定性与复杂性,亟需考虑高精度的概率化预测方法。本文提出一种可扩展且对缺失数据不敏感的多站点光伏功率概率预测框架,专注于大规模光伏电站及时空数据缺失场景。所提出的基于图神经网络的随机粗粒度图注意力与概率时空学习机制,在预测精度和模型训练复杂度方面均表现优异,并能自适应地在时空域内填补缺失数据。消融实验表明,该框架能有效捕捉大规模光伏站点间的复杂时空特征。在超过1600个光伏站点及三类时空缺失数据上的实验结果显示,平均预测性能提...
解读: 该基于图神经网络的大规模光伏功率概率预测技术对阳光电源iSolarCloud智能运维平台具有重要应用价值。可直接应用于:1)SG系列逆变器集群的功率预测与调度优化,通过时空关联建模提升多站点协同控制精度;2)PowerTitan储能系统的充放电策略制定,基于概率预测结果优化能量管理;3)智能诊断系统...