找到 1 条结果 · IEEE Transactions on Power Systems
基于高效参数更新规则的有限数据概率风力发电预测
Probabilistic Wind Power Forecasting With Limited Data Based on Efficient Parameter Updating Rules
Zichao Meng · Ye Guo · IEEE Transactions on Power Systems · 2024年8月
本文提出了一种基于元优化器的有限历史数据下概率风电功率预测(WPF)方法,包括离线训练和在线自适应过程。在离线训练部分,首先通过元训练基于长短期记忆网络(LSTM)构建一个风电功率预测元优化器,随后利用该元优化器在有限历史数据场景下有效训练概率预测模型。这种基于元训练的过程实现了直接从风电功率数据中学习概率风电功率预测算法。在在线自适应部分,通过在线更新策略使离线训练的预测模型不断适应新收集的风电功率数据,进一步提高其性能。在此过程中,还基于这些在线数据更新风电功率预测元优化器,为预测模型的参数...
解读: 该风电预测方法对阳光电源的储能和智能运维产品线具有重要应用价值。在ST系列储能系统中,可用于优化充放电策略和容量配置;在iSolarCloud平台中,可提升风电场发电预测精度,为运维决策提供更可靠支撑。特别是针对新建风电场数据有限的场景,该方法通过在线参数更新机制,能快速提升预测准确度,有助于提高储...