← 返回
风电变流技术 ★ 5.0

基于高效参数更新规则的有限数据概率风力发电预测

Probabilistic Wind Power Forecasting With Limited Data Based on Efficient Parameter Updating Rules

作者 Zichao Meng · Ye Guo
期刊 IEEE Transactions on Power Systems
出版日期 2024年8月
技术分类 风电变流技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 概率风电预测 元优化器 历史数据有限 离线训练 在线自适应
语言:

中文摘要

本文提出了一种基于元优化器的有限历史数据下概率风电功率预测(WPF)方法,包括离线训练和在线自适应过程。在离线训练部分,首先通过元训练基于长短期记忆网络(LSTM)构建一个风电功率预测元优化器,随后利用该元优化器在有限历史数据场景下有效训练概率预测模型。这种基于元训练的过程实现了直接从风电功率数据中学习概率风电功率预测算法。在在线自适应部分,通过在线更新策略使离线训练的预测模型不断适应新收集的风电功率数据,进一步提高其性能。在此过程中,还基于这些在线数据更新风电功率预测元优化器,为预测模型的参数提供更具适应性的更新规则。对实际风电功率数据集进行了数值测试。仿真结果表明,与现有方法相比,在有限历史数据情况下,所提方法在贴合实际情况和预测区间宽度方面具有优越性。

English Abstract

In this paper, we propose a meta-optimizer-based approach for probabilistic wind power forecasting (WPF) with limited historical data, including offline training and online adaptation procedures. In the offline training part, a WPF meta-optimizer is constructed based on the long short-term memory network (LSTM) via meta-training first, and subsequently used to effectively train probabilistic forecast models under limited historical data scenarios. This meta-training-based process achieves learning to learn probabilistic wind power forecast algorithms directly from wind power data. In the online adaptation part, the performance of the forecast model trained offline is further improved by continuously adapting it to newly collected wind power data online with online updating strategies. Therein, the WPF meta-optimizer is also updated based on these online data to provide more adaptive updating rules for the parameters of the forecast model. Numerical tests were conducted on real-world wind power data sets. Simulation results validate the superiority of the proposed method under limited historical data situations compared with existing alternatives considering the accordance with reality and prediction interval width.
S

SunView 深度解读

该风电预测方法对阳光电源的储能和智能运维产品线具有重要应用价值。在ST系列储能系统中,可用于优化充放电策略和容量配置;在iSolarCloud平台中,可提升风电场发电预测精度,为运维决策提供更可靠支撑。特别是针对新建风电场数据有限的场景,该方法通过在线参数更新机制,能快速提升预测准确度,有助于提高储能调度效率和经济效益。建议将其集成到PowerTitan大型储能系统的EMS能量管理模块,并在iSolarCloud平台的预测性维护功能中推广应用。