找到 2 条结果 · IEEE Transactions on Power Systems
基于序的异构智能体强化学习方法用于配电网与输电网协调的负荷频率控制
Order-based Heterogeneous Agents Reinforcement Learning Method with the Coordination of Distribution Network and Transmission Network for Load Frequency Control
Shixuan Yu · Xiaodong Zheng · Tianzhuo Shi · Ruilin Chen 等6人 · IEEE Transactions on Power Systems · 2025年8月
随着大规模分布式能源(DERs)持续接入配电网(DN),DN已具备参与负荷频率控制(LFC)的能力。本文提出一种基于序的异构智能体软演员-评论家方法(OHASAC),以解决异构可控DERs间的协调问题。通过神经网络估计异构智能体的最优更新顺序,并将最优LFC问题建模为考虑DN与输电网(TN)协调的局部可观测马尔可夫博弈。模型涵盖变辐照条件下电池储能系统(BESS)与光伏(PV)的协同调频。仿真结果表明,该方法在DN-TN协同环境中能有效管理多种分布式电源,兼具优良的泛化性与可扩展性。
解读: 该异构智能体协同控制技术对阳光电源PowerTitan储能系统与SG系列光伏逆变器的协同调频具有重要应用价值。OHASAC方法可优化ST储能变流器在变辐照条件下的BESS-PV协同响应策略,提升配电侧分布式资源参与电网LFC的能力。基于序的智能体更新机制可集成至iSolarCloud平台,实现多站点...
基于不确定主震-余震序列的换流站两阶段随机韧性优化
Two-Stage Stochastic Resilience Optimization of Converter Stations Under Uncertain Mainshock-Aftershock Sequences
Kai Wang · Zhihang Xue · Di Cao · Yu Liu 等5人 · IEEE Transactions on Power Systems · 2025年4月
降低电力系统(尤其是换流站)的地震脆弱性并增强其韧性,对于维持其安全运行至关重要。然而,地震往往伴随着余震,且存在诸多不确定性,这为制定震前准备与震后恢复联合策略带来了重大挑战。本文提出了一种新颖的两阶段随机规划模型,以增强换流站在主震 - 余震序列不确定性下的韧性。该模型分为两个部分:第一阶段着重于在地震发生前为换流站设计设备加固策略(EHS)和备件策略(SPS);第二阶段致力于在主震 - 余震序列发生后优化恢复调度(RS)。为降低模型的内生不确定性,采用了一种容差随机数生成方法在第二阶段生成...
解读: 该两阶段随机韧性优化方法对阳光电源大型地面电站及换流站级储能系统具有重要应用价值。针对PowerTitan储能系统和集中式SG逆变器站,可借鉴其不确定性建模思路,构建自然灾害(地震、台风)下的设备易损性评估模型,优化一次设备加固方案与二次系统冗余配置。在iSolarCloud平台集成该韧性评估算法,...