找到 2 条结果 · IEEE Transactions on Power Systems

排序:
风电变流技术 ★ 5.0

非参数随机微分方程在风电功率超短期概率预测中的应用

Nonparametric Stochastic Differential Equations for Ultra-Short-Term Probabilistic Forecasting of Wind Power Generation

Yuqi Xu · Can Wan · Guangya Yang · Ping Ju · IEEE Transactions on Power Systems · 2024年11月

超短期风电功率概率预测为电力系统实时运行提供了关键的不确定性信息。然而,风电出力的随机动态特性复杂,传统参数化模型难以准确刻画其非线性演化过程。本文提出一种基于非参数随机微分方程的建模方法,直接从历史数据中学习漂移与扩散项的结构,无需预设函数形式,有效捕捉风功率的时变统计特征与局部动态行为。实验结果表明,该方法在多个时间尺度下均能提供高精度的概率预测结果,显著提升预测可靠性。

解读: 该非参数随机微分方程预测技术对阳光电源的风电变流器和储能系统具有重要应用价值。可直接应用于ST系列储能变流器的功率调度优化和PowerTitan大型储能系统的容量配置。通过精确预测风电功率的随机波动特性,有助于提升储能系统的调峰调频性能,优化电池充放电策略。该技术还可集成到iSolarCloud平台...

储能系统技术 储能系统 强化学习 ★ 5.0

AdapSafe2:无先验安全认证的强化学习在多区域频率控制中的应用

AdapSafe2: Prior-Free Safe-Certified Reinforcement Learning for Multi-Area Frequency Control

Xu Wan · Mingyang Sun · IEEE Transactions on Power Systems · 2024年10月

高比例可再生能源接入下,安全强化学习(RL)被广泛用于电力系统频率控制。然而,现有方法在非稳态环境适应与高维时变安全约束满足方面仍面临挑战。本文提出AdapSafe2,一种无需先验知识且具备安全保证的多区域频率控制方法。通过元环境学习算法自适应追踪系统参数变化,并构建元强化学习框架实现无模型自适应控制;设计基于控制屏障函数的安全评判网络与安全补偿器,动态识别并仅对高风险区域进行补偿,提升高维约束下的求解效率。在2区与3区低惯量系统中的仿真验证了该方法在动态安全约束下的优越性能。

解读: 该无先验安全强化学习技术对阳光电源PowerTitan储能系统和ST系列储能变流器的频率调节功能具有重要应用价值。AdapSafe2的元学习自适应框架可增强储能系统在高比例新能源场景下的动态响应能力,其控制屏障函数安全机制能确保储能系统在SOC、功率等多维约束下的安全运行。该技术可与阳光电源现有的V...