← 返回
风电变流技术
★ 5.0
非参数随机微分方程在风电功率超短期概率预测中的应用
Nonparametric Stochastic Differential Equations for Ultra-Short-Term Probabilistic Forecasting of Wind Power Generation
| 作者 | Yuqi Xu · Can Wan · Guangya Yang · Ping Ju |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2024年11月 |
| 技术分类 | 风电变流技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 超短期风电概率预测 非参数随机微分方程 高斯过程回归 随机动力学网络 两阶段训练算法 |
语言:
中文摘要
超短期风电功率概率预测为电力系统实时运行提供了关键的不确定性信息。然而,风电出力的随机动态特性复杂,传统参数化模型难以准确刻画其非线性演化过程。本文提出一种基于非参数随机微分方程的建模方法,直接从历史数据中学习漂移与扩散项的结构,无需预设函数形式,有效捕捉风功率的时变统计特征与局部动态行为。实验结果表明,该方法在多个时间尺度下均能提供高精度的概率预测结果,显著提升预测可靠性。
English Abstract
Ultra-short-term probabilistic wind power forecasting provides paramount uncertainty information for power system real-time operation. However, the stochastic dynamics of wind power generation are not well clarified in existing studies. To transcend such a research barrier, a nonparametric stochastic differential equation (NSDE) combined with deep neural networks is developed for ultra-short-term probabilistic wind power forecasting. Without prior assumptions of the functional structures, an improved Gaussian process regression method is proposed to adaptively infer NSDEs that flexibly capture the evolving temporal dynamics and stochastic attributes inherent in wind power. To tackle issues of sparse observations and analytic solution deficiency, a novel stochastic dynamics-informed network is embedded with a recurrent temporal interpolator and an energy-guided forecaster. An innovative two-stage training algorithm is presented to optimize the network efficiently. Consequently, probabilistic wind power forecasts are derived via precise solutions of the well-inferred NSDEs for future states. Comprehensive case studies based on actual wind farm data demonstrate the superior performance of the proposed approach.
S
SunView 深度解读
该非参数随机微分方程预测技术对阳光电源的风电变流器和储能系统具有重要应用价值。可直接应用于ST系列储能变流器的功率调度优化和PowerTitan大型储能系统的容量配置。通过精确预测风电功率的随机波动特性,有助于提升储能系统的调峰调频性能,优化电池充放电策略。该技术还可集成到iSolarCloud平台,为风储联合运行提供更可靠的决策支持。对阳光电源开发新一代智能风储变流系统具有重要的技术启发,有利于提升产品在风电消纳和电网友好性方面的竞争力。