找到 2 条结果 · IEEE Transactions on Power Systems

排序:
电动汽车驱动 储能系统 强化学习 ★ 5.0

面向电动汽车协调的两阶段输电系统运营商-配电系统运营商服务提供框架

Two-Stage TSO-DSO Services Provision Framework for Electric Vehicle Coordination

Yi Wang · Dawei Qiu · Fei Teng · Goran Strbac · IEEE Transactions on Power Systems · 2024年12月

高比例可再生能源接入导致电力系统惯性下降,对频率响应服务的需求日益增加。电动汽车(EV)凭借车网互动(V2G)能力可为输电系统运营商(TSO)提供经济高效的频率调节服务,但其在参与频率支撑时可能引发电压安全问题,影响配电系统运营商(DSO)运行。为此,本文提出一种两阶段多电动汽车服务提供框架:第一阶段参与日前TSO-DSO频率备用调度;第二阶段在配电网中实时执行备用交付并支持电压调节。针对大规模EV与复杂环境,第二阶段采用去中心化调控范式,并设计通信高效的强化学习算法以降低多智能体训练的通信开销...

解读: 该两阶段TSO-DSO协调框架对阳光电源充电桩与储能业务具有重要应用价值。文章提出的去中心化强化学习算法可直接应用于阳光电源充电桩产品,实现V2G双向充放电时的频率-电压协同控制,避免频率支撑服务引发配网电压越限。该框架与PowerTitan储能系统的多层级调度架构高度契合:日前阶段可优化储能参与辅...

电动汽车驱动 储能系统 微电网 可靠性分析 ★ 5.0

基于模仿专家经验的可解释深度强化学习在电动汽车智能充电中的应用

Interpretable Deep Reinforcement Learning With Imitative Expert Experience for Smart Charging of Electric Vehicles

Shuangqi Li · Alexis Pengfei Zhao · Chenghong Gu · Siqi Bu 等6人 · IEEE Transactions on Power Systems · 2024年7月

深度强化学习(DRL)因计算效率高,有望实现复杂系统的在线优化控制,但其可解释性与可靠性限制了在智能电网能量管理中的工程应用。本文首次提出一种新颖的模仿学习框架,用于解决电网连接电动汽车(GEV)充电管理中的高效计算问题。通过基于车网互动(V2G)成本效益分析的先验优化模型生成最优策略,并构建专家经验池以配置学习环境。设计双Actor-Imitator网络结构,实现专家知识向强化学习模型的有效迁移,提升训练效率与调度性能。实验结果表明,该方法在英国某示范微网中有效提升了V2G经济效益并缓解了电池...

解读: 该可解释深度强化学习技术对阳光电源充电桩产品线及储能系统具有重要应用价值。文章提出的模仿学习框架可直接应用于阳光电源V2G充电桩的智能调度算法,通过专家经验池加速DRL训练,提升充电策略的可靠性与可解释性,解决传统黑盒AI在电网能量管理中的工程化难题。该方法可集成至iSolarCloud云平台,实现...