找到 1 条结果 · IEEE Transactions on Power Systems

排序:
储能系统技术 储能系统 SiC器件 微电网 ★ 5.0

基于机器学习增强的大规模并行暂态仿真方法用于大规模可再生能源电力系统

Machine-Learning-Reinforced Massively Parallel Transient Simulation for Large-Scale Renewable-Energy-Integrated Power Systems

Tianshi Cheng · Ruogu Chen · Ning Lin · Tian Liang 等5人 · IEEE Transactions on Power Systems · 2024年6月

可再生能源系统(RESs)在向绿色智能电网转型中起关键作用,但其受光照、风速等自然因素影响,具有复杂性与不确定性,给并网带来挑战。电磁暂态(EMT)仿真可有效研究RES并网问题,但现有方法受限于模型非线性和计算复杂度,难以实现大规模精细化仿真。本文提出一种面向数据、结合机器学习的CPU-GPU大规模并行EMT仿真方法,采用人工神经网络构建数据驱动的RES模型,并基于实体-组件-系统架构集成。模型训练依托传统物理EMT模型生成的数据,并通过MATLAB/Simulink验证。将RES元件组建成微网...

解读: 该机器学习增强的大规模并行EMT仿真技术对阳光电源具有重要战略价值。在PowerTitan储能系统和大型光伏电站并网设计中,可快速仿真数百万级SiC逆变器的暂态交互特性,400倍加速性能显著缩短产品开发周期。对ST系列储能变流器的构网型GFM控制策略优化尤为关键,能高效评估微电网场景下多台设备的协同...