找到 1 条结果 · IEEE Transactions on Power Systems
基于贝叶斯特征选择的区域风电功率预测
Regional Wind Power Forecasting Based on Bayesian Feature Selection
Theodoros Konstantinou · Nikos Hatziargyriou · IEEE Transactions on Power Systems · 2024年4月
近年来,可再生能源在电力系统中的整合程度不断提高。其固有的不可预测性和输出波动给电力系统的安全运行和能源市场定价的稳定性带来了挑战。因此,准确预测可再生能源发电量至关重要。目前已应用的几种有效预测方法均基于机器学习(ML)。应用机器学习方法的一个关键因素是输入特征的选择,在区域风电预测中,这一任务变得更为复杂,因为区域范围可能涵盖整个国家。所提出的方法旨在通过一种数据驱动的、与模型无关的预处理技术精简输入特征,从而提高预测性能。该技术包括将多维数值天气预报数据划分为多个子区域,并剔除无信息的子区...
解读: 该贝叶斯特征选择的预测方法对阳光电源的储能与风电产品线具有重要应用价值。特别是在ST系列储能变流器和风电变流器的智能调度优化方面,可将该预测算法集成到iSolarCloud平台,提升系统对风电功率波动的预判能力。通过筛选关键气象特征与历史数据,可优化储能系统的充放电策略,提高PowerTitan等大...