找到 2 条结果 · IEEE Transactions on Power Systems

排序:
风电变流技术 ★ 5.0

考虑非线性效应的双馈感应风电机组主导电力系统跨时间尺度动态交互分析

Cross-Timescale Dynamics Interaction Analysis of DFIG-WTs-Dominated Power Systems Considering Nonlinear Effects

Jiabing Hu · Zebin Liu · Yingbiao Li · Jianbo Guo · IEEE Transactions on Power Systems · 2025年8月

随着以双馈感应发电机(DFIG)型风力发电机组(WTs)为代表的风电渗透率不断提高,电力系统动态呈现出多时间尺度特征。此外,系统的强非线性特性导致动态过程中多时间尺度动态之间出现跨时间尺度耦合现象。然而,以往的研究通常采用线性方法评估平衡点邻域的稳定性,而忽略了非线性效应引起的跨时间尺度特征。本文针对这一不足,在以双馈感应发电机型风力发电机组为主导的电力系统中采用基于二阶泰勒展开的正规形方法(NFM)。随后,揭示了跨时间尺度耦合模式和现象。此外,分析了耦合动态的频率特性和阻尼特性。最后,在实时实...

解读: 该研究对阳光电源的风电变流器和储能变流器产品线具有重要参考价值。研究揭示的跨时间尺度动态交互机制,可直接应用于ST系列储能变流器和风电变流器的控制系统优化,特别是在高渗透率新能源场景下的稳定性控制。通过将非线性分析方法集成到控制算法中,可提升产品在弱电网条件下的适应性。这对完善阳光电源的构网型(GF...

储能系统技术 储能系统 深度学习 ★ 4.0

多任务图自适应学习在澳大利亚国家电力市场多元电价短期预测中的应用

Multi-Task Graph Adaptive Learning for Multivariate Electricity Price Short-Term Forecasting in Australia's National Electricity Market

Yi Li · Chaojie Li · Guo Chen · Xiaojun Zhou 等5人 · IEEE Transactions on Power Systems · 2024年4月

准确的电价短期预测对电力市场数字化至关重要。然而,可再生能源扩张与用电需求增长导致电价波动加剧,预测难度加大。供需不平衡的不确定性及电力市场的时空关联性是精准预测的主要障碍。本文提出一种多任务学习模型MGAAL,结合图注意力机制,并引入异常价格尖峰预测的辅助任务,提升泛化能力并降低过拟合风险。MGAAL采用基于注意力的图神经网络捕捉电力时空流动动态,并通过同方差不确定性和梯度归一化自适应调整任务权重。基于澳大利亚国家电力市场数据的实验表明,该模型性能优于当前先进方法。

解读: 该多任务图自适应学习电价预测技术对阳光电源储能系统具有重要应用价值。在PowerTitan大型储能系统和ST系列储能变流器的能量管理策略中,精准的电价短期预测可优化充放电调度决策,通过峰谷套利提升收益。其图神经网络捕捉时空关联的方法可集成至iSolarCloud云平台,实现多站点储能协同优化。异常价...