找到 1 条结果 · IEEE Transactions on Power Systems
一种基于神经网络虚拟阻抗的双向电网逆变器控制新方法以改善微电网动态性能
A Novel Bi-Directional Grid Inverter Control Based on Virtual Impedance Using Neural Network for Dynamics Improvement in Microgrids
Mohamad Alzayed · Michel Lemaire · Hicham Chaoui · Daniel Massicotte · IEEE Transactions on Power Systems · 2024年5月
在微电网中,电压源逆变器通常采用下垂控制技术,并结合电压和内部电流控制回路,以实现可靠的电力供应。由于线路阻抗不匹配,标准下垂控制技术难以实现功率的均匀分配,并限制并联连接之间的环流,尤其是在高度非线性系统中。本研究旨在引入一种基于神经网络的虚拟阻抗,并将其与双向电网逆变器控制技术相结合,以提高微电网动态运行期间的稳定性。为了在各种运行场景下以较小的偏差和更好的稳定性准确跟踪需求和参考功率,所提出的技术采用前馈神经网络(FFNN)来学习逆变器暂态过程中的非线性模型。该技术无需额外的调节步骤,仅需...
解读: 该神经网络自适应虚拟阻抗控制技术对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。当前阳光电源储能系统采用下垂控制实现多机并联功率分配,但线路阻抗不匹配和负载突变会影响动态响应。该研究提出的神经网络在线调节虚拟阻抗方案,可直接应用于ST储能变流器的控制算法优化,提升多台...