找到 2 条结果 · IEEE Transactions on Power Systems
基于解析神经网络高斯过程的机会约束电压调节方法用于含光伏、电池和电动汽车的主动配电网
Analytic Neural Network Gaussian Process Enabled Chance-Constrained Voltage Regulation for Active Distribution Systems With PVs, Batteries and EVs
Tong Su · Junbo Zhao · Yansong Pei · Yiyun Yao 等5人 · IEEE Transactions on Power Systems · 2024年11月
本文提出一种基于解析神经网络高斯过程(NNGP)的机会约束实时电压调节方法,适用于含光伏、储能和电动汽车的主动配电网。NNGP利用历史量测数据通过贝叶斯推断实现节点电压的实时概率估计,并被完全解析地嵌入最优潮流模型中,以适应多种拓扑变化。通过机会约束显式考虑电压估计的不确定性,显著提升了不同场景下电压调节的可靠性。在美国科罗拉多州西部实际759节点系统上的仿真结果表明,所提方法在多种拓扑下均能实现精确电压估计,并有效协调光伏、电池与电动汽车实现可靠电压调节。
解读: 该解析神经网络高斯过程电压调节技术对阳光电源多产品线协同控制具有重要价值。在ST储能系统方面,可将NNGP概率预测嵌入PowerTitan的能量管理系统,实现基于不确定性的机会约束优化调度,提升电压支撑可靠性。对于SG系列光伏逆变器,该方法可优化无功调节策略,在拓扑变化场景下保持电压稳定。在充电桩产...
高渗透率可再生能源电力系统实时调度:一种专家知识与强化学习混合方法
Real-Time Scheduling of High-Penetrated Renewable Power Systems: An Expert Knowledge and Reinforcement Learning Hybrid Approach
Sijun Du · Tao Ding · Yang Xiao · Jingyu Wan 等6人 · IEEE Transactions on Power Systems · 2024年7月
现代电力系统正向低碳可持续转型,可再生能源渗透率的提升及其不确定性给系统调度带来严峻挑战,灵活元件的引入进一步增加了调度复杂性。为此,本文提出一种融合专家知识与强化学习(RL)的混合实时调度方法。首先建立包含柔性负荷与储能的高渗透率可再生能源系统实时调度模型,并转化为马尔可夫决策过程。通过引入专家知识作为系统与RL智能体之间的中介,利用RL算法优化的机组控制序列进行调度决策。基于SG 126节点系统的算例验证了所提方法在保障系统安全稳定运行的同时,显著提升可再生能源消纳能力的有效性与潜力。
解读: 该混合调度方法对阳光电源PowerTitan储能系统和iSolarCloud平台具有重要应用价值。强化学习与专家知识融合的实时调度策略可直接应用于ST系列储能变流器的智能控制算法,优化充放电决策以应对高比例光伏接入的不确定性。该方法可集成至iSolarCloud云平台,实现多站点储能系统协同调度,提...