找到 2 条结果 · IEEE Transactions on Industry Applications

排序:
光伏发电技术 光伏逆变器 ★ 5.0

人工智能辅助的三相单级光伏逆变器系统黑箱建模

Artificial Intelligence Aided Black-Box Modeling of Three-Phase Single-Stage Photovoltaic Inverter Systems

Yuxi Men · Junhui Zhang · Xiaonan Lu · Tianqi Hong · IEEE Transactions on Industry Applications · 2025年1月

随着太阳能在配电系统中的渗透率不断提高,对光伏(PV)发电系统进行精确建模和适当控制变得越来越重要。然而,基于逆变器的电源(IBR)的建模和系统辨识颇具挑战性,因为制造商可能不会提供敏感信息(如电气元件的拓扑结构或参数)。仅利用经验数据而无需系统内部细节的黑箱建模方法,可能是解决上述问题的有效途径。同时,鉴于人工神经网络(ANN)具有强大的逼近能力,其可增强用于逆变器主导系统辨识的传统建模方法。本文对电力电子变换器(PEC)的黑箱建模方法进行了综述。此外,本文提出了一种使用非线性自回归外生神经网...

解读: 从阳光电源的业务视角来看,这项基于人工智能的光伏逆变器黑箱建模技术具有重要的战略价值和应用前景。 **业务价值方面**,该技术解决了逆变器系统建模中的核心痛点。在实际应用场景中,电网公司、系统集成商或第三方运维机构往往难以获取逆变器的详细拓扑结构和控制参数,而这项技术仅依靠输入输出数据即可建立精确...

储能系统技术 储能系统 强化学习 ★ 5.0

基于多智能体深度强化学习的氢储能系统参与式分散电压控制

Hydrogen Energy Storage System Participated Decentralized Voltage Control With Multi-Agent Deep Reinforcement Learning Method

Xian Zhang · Changlei Gu · Hong Wang · Guibin Wang 等6人 · IEEE Transactions on Industry Applications · 2025年1月

随着电力电子技术的发展,智能逆变器和储能系统正逐步应用于有源配电网(ADN)的电压调节。本文将氢能储能系统(HESS)纳入配电网电压控制,并提出一种协同电压控制框架。首先,考虑不同电压调节设备的特性,构建了一个双时间尺度电压控制问题。对HESS进行精确建模并引入快速时间尺度。为了实现该问题的分散高效求解,将其重新表述为双时间尺度马尔可夫博弈问题,然后提出一种改进的多智能体软演员 - 评论家(MASAC)算法来求解。具体而言,将优先经验回放引入MASAC算法,即PER - MASAC,以增强训练过...

解读: 该多智能体深度强化学习的分散电压控制技术对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。氢储能系统的无功调节策略可直接迁移至电化学储能PCS控制,增强ST储能变流器在配电网中的自主电压支撑能力。多智能体协同框架可应用于PowerTitan多机并联场景,实现分布式协同控...