找到 1 条结果 · IEEE Journal of Emerging and Selected Topics in Power Electronics
基于深度强化学习的Vienna整流器PMSG风力发电系统性能优化控制方案
Deep Reinforcement Learning-Based Control Scheme for Performance Enhancement of PMSG Wind Turbine With Vienna Rectifier
Yucheng Du · Bin Cai · Shaomin Yan · Weiyu Zhang 等6人 · IEEE Journal of Emerging and Selected Topics in Power Electronics · 2024年9月
提出一种基于深度强化学习(DRL)的新型控制方案,以提升采用Vienna整流器的永磁同步发电机(PMSG)在风力发电系统中的运行性能。针对PMSG定子电流谐波及Vienna整流器中点电压波动问题,设计了基于风速、具有变权重系数的奖励函数,并构建以风速为首要观测状态的快速响应Agent模型,以降低外部环境干扰。通过构建多样化的随机训练环境,增强系统对不同风速变化场景的适应能力。采用双延迟深度确定性策略梯度(TD3)算法进行离线训练。仿真与实验结果表明,该方案在不同风速下控制误差小,显著提升了电能质...
解读: 该研究提出的基于DRL的Vienna整流器控制方案对阳光电源的风电变流器和储能变流器产品线具有重要参考价值。特别是其针对电流谐波和中点电压波动的优化思路,可应用于ST系列储能变流器的三电平拓扑控制。研究中基于风速的变权重奖励函数设计方法,对改进公司产品在复杂工况下的控制性能具有启发意义。该方案通过T...