找到 1 条结果 · IEEE Access

排序:
光伏发电技术 可靠性分析 机器学习 深度学习 ★ 5.0

基于卷积神经网络、小波神经网络与掩码多头注意力机制的全球辐照度预测模型

A Global Irradiance Prediction Model Using Convolutional Neural Networks, Wavelet Neural Networks, and Masked Multi-Head Attention Mechanism

Walid Mchara · Lazhar Manai · Mohamed Abdellatif Khalfa · Monia Raissi 等5人 · IEEE Access · 2025年1月

准确预测全球辐照度对光伏系统尤其是太阳能电动汽车的能量管理至关重要。传统模型难以捕捉辐照数据中复杂的时空依赖性,导致在多变天气条件下预测精度受限。本文提出一种融合卷积神经网络(CNN)、小波神经网络(WNN)与掩码多头注意力(MMHA)机制的新型混合框架CNN-WNN-MMHA。CNN提取局部空间特征,WNN进行频域分解以捕获多尺度变化,MMHA建模时间依赖并编码位置信息。模型在突尼斯八年实测气候数据上训练与验证,实验表明其性能显著优于LSTM、BiLSTM和CNN-LSTM等先进方法,MAPE...

解读: 该混合深度学习辐照度预测模型对阳光电源多条产品线具有重要应用价值。在SG系列光伏逆变器中,可优化MPPT算法的前瞻性控制,提前调整功率跟踪策略;在PowerTitan储能系统中,精准的辐照度预测可优化充放电调度策略,提升光储协同效率;在iSolarCloud智能运维平台中,该模型可增强预测性维护能力...