找到 1 条结果 · IEEE Access
高密度NOMA网络中网络切片的子信道分配和功率分配优化:Q学习方法
Optimizing Subchannel Assignment and Power Allocation for Network Slicing in High-Density NOMA Networks: A Q-Learning Approach
Suhare Solaiman · IEEE Access · 2025年1月
高密度环境下连接设备数量增长给不同网络切片服务带来严峻挑战,如超可靠低延迟通信和大规模机器类型通信,每种服务有独特QoS要求。主要困难是分配网络资源最大化频谱利用同时满足mMTC大规模连接需求和URLLC超可靠低延迟通信需求。本研究利用非正交多址网络切片在各种服务间共享无线资源,改善大规模设备部署连接性。提出优化算法用于高密度NOMA网络中URLLC和mMTC设备的子信道分配和功率分配,采用Q学习算法优化决策过程确保URLLC和mMTC设备间高效资源共享并满足各自QoS要求。大量仿真显示所提算法...
解读: 该网络切片优化技术可应用于阳光电源虚拟电厂通信系统。阳光管理的大规模分布式光伏储能资源需要低延迟高可靠的通信网络,该NOMA和Q学习方法可优化海量设备接入和实时调度指令传输。阳光可将该技术应用于iSolarCloud平台边缘通信,实现储能聚合和需求响应,提升系统实时响应能力和调度灵活性。...