找到 1 条结果 · IEEE Access
通过深度学习和混合安全模型缓解智能信息物理电力系统的网络风险
Mitigating Cyber Risks in Smart Cyber-Physical Power Systems Through Deep Learning
M. A. S. P. Dayarathne · M. S. M. Jayathilaka · R. M. V. A. Bandara · V. Logeeshan 等6人 · IEEE Access · 2025年1月
智能电网中可再生能源集成的兴起带来新网络安全挑战,促使本研究检验智能信息物理电力系统CPPS的脆弱性。风能和太阳能等可再生能源集成到智能电网因其分散和可变特性带来运行风险,特别是在实时监控和控制所需的通信层内。虽然可再生能源集成增加不直接影响网络安全脆弱性,但主要挑战源于其分散性。解决这种分散需要在供需之间使用网络层,为电力系统控制和通信系统引入网络威胁脆弱性。这些层易受虚假数据注入FDI、拒绝服务DoS和重放攻击等多样化网络攻击,可能危及电网稳定性和安全性。为应对这些风险,研究提出混合方法,集...
解读: 该网络安全技术对阳光电源智慧能源平台安全防护至关重要。阳光iSolarCloud云平台连接海量光伏储能设备,面临虚假数据注入和拒绝服务等网络攻击威胁。该研究的深度学习异常检测方法可集成到阳光云平台安全体系,实现实时威胁识别和防御。在电网侧储能场景下,网络攻击可能导致储能系统误动作,影响电网稳定。该C...