找到 1 条结果 · IEEE Access

排序:
储能系统技术 储能系统 GaN器件 深度学习 ★ 4.0

交通场景理解的深度学习综述

Deep Learning for Traffic Scene Understanding: A Review

Parya Dolatyabi · Jacob Regan · Mahdi Khodayar · IEEE Access · 2025年1月

本综述论文深入分析深度学习模型在交通场景理解中的应用,这是现代智能交通系统的关键方面。研究检验分类、目标检测和分割等基础技术,并扩展到动作识别、目标跟踪、路径预测、场景生成检索、异常检测、图像到图像转换I2IT和人员重识别等更高级应用。论文综合广泛研究的见解,追溯从传统图像处理方法到复杂深度学习技术如卷积神经网络CNN和生成对抗网络GAN的演进。综述探讨三类主要领域自适应DA方法:基于聚类、基于差异和基于对抗,强调其在交通场景理解中的重要性。讨论超参数优化HPO的重要性,强调其在增强模型性能和效...

解读: 该交通场景理解技术可应用于阳光电源储能电站和充电站智能管理。阳光在新能源汽车充电领域需要车辆识别、车位管理和安全监控。该深度学习综述涵盖的目标检测和跟踪技术可集成到阳光充电站管理系统,实现车辆自动识别、充电桩智能分配和异常行为检测。在工商业储能场景下,该技术可优化园区能源管理,识别车辆进出和负荷变化...