找到 2 条结果 · Energy Conversion and Management
一种具有光热、储热和电化学性能的新型集成碳化木电极用于太阳能驱动的热化学电池
A novel integrated carbon-wood electrode with photothermal, heat storage, and electrochemical properties for solar-driven thermochemical cells
Jun Zhang · Xiaotian Li · Jili Zheng · Yanan Zou 等8人 · Energy Conversion and Management · 2025年1月 · Vol.326
摘要 热化学电池为太阳能利用提供了一种可持续且环保的解决方案,但其性能常受到太阳辐射波动的限制。传统方法是将储热系统整合到热化学电池中,然而这些方法受限于较低的传热速率以及传统电极较小的电化学活性表面积。本研究创新性地提出一种碳化木电极设计,集成了增强的光热转换、储热和电化学性能,可实现太阳能驱动热化学电池中的连续发电。与传统的石墨电极相比,碳化木结构使光热转换效率提高了67%,电化学活性表面积增加了28%,单位体积(每立方厘米)的放热时间延长至16.67分钟。采用此类电极的热化学电池在太阳辐射...
解读: 该碳木一体化电极的光热-储热-电化学集成技术为阳光电源储能系统提供创新思路。其光热转换效率提升67%、电化学活性面积增加28%的设计理念,可应用于ST系列PCS的热管理优化和PowerTitan储能系统的温控策略改进。特别是其应对间歇性光照的稳定输出能力,与SG系列光伏逆变器的MPPT优化技术形成协...
面向风力机结构载荷与功率评估的机器学习应用:工程视角
Towards machine learning applications for structural load and power assessment of wind turbine: An engineering perspective
Qiulei Wang · Junjie Hu · Shanghui Yang · Zhikun Dong 等6人 · Energy Conversion and Management · 2025年1月 · Vol.324
摘要 近几十年来,日益增长的能源需求加速了风电场的建设,对风力机性能中精确的载荷与功率评估提出了更高的要求。传统方法依赖于解析尾流模型和性能曲线,在复杂入流条件下往往难以适应,导致在预测风机载荷和功率输出时存在显著的不准确性。本研究以NREL 5MW基准风力机为案例,提出一种新颖的两阶段框架,用于应对风电场规划与开发各个阶段中的上述挑战。第一阶段是在初步设计阶段推导简化推力调制因子的推荐值,从而快速评估对风电场优化至关重要的最大推力载荷和疲劳推力载荷。第二阶段聚焦于详细设计阶段的机器学习模型的设...
解读: 该机器学习框架对阳光电源风电变流器及储能系统具有重要价值。通过LightGBM模型实现风机负载与功率的高精度预测(R²>0.98),可优化ST系列PCS的功率调度策略和PowerTitan储能系统的充放电控制。推荐推力调制因子方法可应用于iSolarCloud平台的预测性维护模块,结合GFM控制技术...