找到 2 条结果 · Energy Conversion and Management
一种具有光热、储热和电化学性能的新型集成碳化木电极用于太阳能驱动的热化学电池
A novel integrated carbon-wood electrode with photothermal, heat storage, and electrochemical properties for solar-driven thermochemical cells
Jun Zhang · Xiaotian Li · Jili Zheng · Yanan Zou 等8人 · Energy Conversion and Management · 2025年1月 · Vol.326
摘要 热化学电池为太阳能利用提供了一种可持续且环保的解决方案,但其性能常受到太阳辐射波动的限制。传统方法是将储热系统整合到热化学电池中,然而这些方法受限于较低的传热速率以及传统电极较小的电化学活性表面积。本研究创新性地提出一种碳化木电极设计,集成了增强的光热转换、储热和电化学性能,可实现太阳能驱动热化学电池中的连续发电。与传统的石墨电极相比,碳化木结构使光热转换效率提高了67%,电化学活性表面积增加了28%,单位体积(每立方厘米)的放热时间延长至16.67分钟。采用此类电极的热化学电池在太阳辐射...
解读: 该碳木一体化电极的光热-储热-电化学集成技术为阳光电源储能系统提供创新思路。其光热转换效率提升67%、电化学活性面积增加28%的设计理念,可应用于ST系列PCS的热管理优化和PowerTitan储能系统的温控策略改进。特别是其应对间歇性光照的稳定输出能力,与SG系列光伏逆变器的MPPT优化技术形成协...
基于I-V曲线成像与双流深度神经网络的光伏系统遮挡类型及严重程度诊断
Shading type and severity diagnosis in photovoltaic systems via I-V curve imaging and two-stream deep neural network
Zengxiang Hea · Hong Cai Chen · Shuo Shan · Yihua Hu 等6人 · Energy Conversion and Management · 2025年1月 · Vol.324
摘要 遮挡是光伏(PV)系统中最常见的异常现象之一,会导致功率损失和热点效应。目前大多数研究仅能实现遮挡检测,而无法进一步诊断遮挡的类型和严重程度。本文提出了一种结合I-V曲线成像与双流深度神经网络(DNN)的有效方法,用于诊断遮挡类型,并估计实际运行光伏系统中五种常见遮挡类型的严重程度。该方法首先对光伏组串的I-V曲线进行重采样,并转换至标准测试条件(STC),以消除数据尺度和环境因素对遮挡诊断结果的影响。随后,采用一种称为格拉米安角和场(Gramian angular summation f...
解读: 该阴影诊断技术对阳光电源SG系列光伏逆变器及iSolarCloud平台具有重要应用价值。通过I-V曲线成像与双流深度神经网络,可实现阴影类型识别与严重程度量化评估,弥补现有MPPT优化技术仅能检测异常但无法精准诊断的不足。建议将GASF时序成像与LSTM-CNN融合算法集成至智能运维平台,结合组串级...