找到 1 条结果 · Energy Conversion and Management
基于多图神经网络辅助双域Transformer的风力发电时空预测
Spatiotemporal forecasting using multi-graph neural network assisted dual domain transformer for wind power
Guolian Hou · Qingwei Li · Congzhi Huang · Energy Conversion and Management · 2025年1月 · Vol.325
摘要 准确预测风力发电量对于风电场的运行与维护决策至关重要。随着风电机组规模和容量的不断增加,综合考虑时间与空间特征已成为提高预测精度的关键。本文提出一种新颖的多步风力发电时空预测方法,该方法采用多图神经网络辅助的双域Transformer模型。具体而言,为充分表征风电机组之间的异质依赖关系,通过注意力机制构建多种关系图并将其融合为统一图结构。随后,设计了时空融合模块(STFM),结合图卷积网络与一维卷积神经网络,以同时捕捉时间与空间特征。此外,提出了时频双域Transformer(DDform...
解读: 该时空多图神经网络风电预测技术对阳光电源储能系统具有重要应用价值。可集成至iSolarCloud平台,为风储耦合场景下的ST系列PCS提供精准功率预测支撑,优化储能充放电策略。多步预测能力(10分钟至6小时)与PowerTitan储能系统的能量管理周期高度契合,可提升风储协同调度精度。其时频双域Tr...