找到 1 条结果 · Applied Energy
使用多通道单维卷积神经网络模型评估高密度城市区域的建筑一体化光伏潜力
Assessing building-integrated photovoltaic potential in dense urban areas using a multi-channel single-dimensional convolutional neural network model
Xiaotian Geng · Senhong Cai · Zhonghua Gou · Applied Energy · 2025年1月 · Vol.377
摘要 评估建筑一体化光伏(BIPV)潜力对于太阳能的全面推广与部署具有重要意义。传统模型大多依赖形态学参数进行光伏潜力评估,在高密度城市区域中存在对城市形态主观认知强、泛化能力差等挑战。本研究采用卷积神经网络(CNN)进行三维建模,以评估中大规模城市尺度下的BIPV潜力,提出了一种多维单通道一维CNN模型框架。该模型结合高斯混合模型与建筑物点云数据,提取建筑窗墙比,从而增强建筑群点云中的个体特征;同时利用三维物理模型提取建筑地理朝向信息,并通过空间连通性整合点云分布,以解决点云卷积旋转不变性导致...
解读: 该BIPV潜力评估技术对阳光电源SG系列光伏逆变器和智能运维平台具有重要应用价值。基于CNN的三维建模方法可精准预测城市建筑光伏发电潜力,为SG逆变器在密集城区的容量配置和MPPT优化提供数据支撑。研究中的点云数据处理和地理方位提取技术可集成至iSolarCloud平台,实现建筑光伏系统的智能选址和...