找到 1 条结果 · Applied Energy
基于深度强化学习的氢燃料电池列车能量与热管理协同优化策略
Collaborative optimization strategy of hydrogen fuel cell train energy and thermal management system based on deep reinforcement learning
Kangrui Jiang · Zhongbei Tian · Tao Wen · Kejian Song 等6人 · Applied Energy · 2025年1月 · Vol.393
摘要 轨道交通脱碳已成为轨道交通行业未来发展的主要方向。氢燃料电池(HFC)列车因其零碳排放和较低的改造成本,成为具有竞争力的潜在解决方案。然而,由于氢气在储存、运输和利用方面面临的挑战,其成本较高,仍是制约HFC列车商业化的主要因素。温度对HFC的能量转换效率和寿命具有显著影响,其热管理要求比内燃机更为严格。现有的HFC列车能量管理系统(EMS)通常忽略了HFC温度变化对能量转换效率的影响,难以根据环境动态条件实现能量与热管理的实时平衡控制。为解决这一问题,本文提出一种基于深度强化学习(DRL...
解读: 该深度强化学习能量-热管理协同优化技术对阳光电源氢能及储能系统具有重要借鉴价值。其MDP建模与双深度Q学习算法可应用于ST系列PCS的多能源协调控制,实现电池SOC动态平衡与温控优化。该方法在充电站EV Solutions中可优化充电功率分配,降低设备热应力;在PowerTitan储能系统中可提升变...