找到 2 条结果 · Applied Energy

排序:
光伏发电技术 ★ 5.0

水风光混合系统中现有水电站扩容优化的解析方法:以雅砻江流域为例

Analytical method for optimizing capacity expansion of existing hydropower plants in hydro-wind-photovoltaic hybrid system: A case study in the Yalong River basin

Chen Wu · Pan Liu · Qian Cheng · Zhikai Yang 等11人 · Applied Energy · 2025年1月 · Vol.383

摘要 水电可通过构建水-风-光混合能源系统,有效整合具有间歇性的风电和光伏(PV)发电。随着风电和光伏电站规模的不断扩大,扩大水电装机容量变得尤为关键。然而,传统的扩容数值方法需要高时间分辨率的输入数据以及复杂的模拟计算。为解决这一问题,本文提出一种无需高分辨率输入数据的解析方法,用于推导水电站最优扩容规模,便于实际应用并支持敏感性分析。首先,基于历史运行数据,分别采用多项式函数和线性函数对水电出力及风电-光伏弃电率随水电扩容规模的变化关系进行估计;其次,结合净现值法,建立考虑总发电量(包括水电...

解读: 该水风光混合系统容量优化方法对阳光电源具有重要参考价值。研究揭示的弃电率与容量扩展关系,可指导我们ST系列储能系统在水风光互补场景的容量配置策略。文中敏感性分析方法(电价敏感度为运维成本11倍)可应用于PowerTitan储能电站的经济性评估模型。特别是无需高时间分辨率数据的解析法,可集成到iSol...

光伏发电技术 ★ 5.0

基于贝叶斯优化算法与二次分解的误差校正深度Autoformer模型在光伏发电预测中的应用

An error-corrected deep Autoformer model via Bayesian optimization algorithm and secondary decomposition for photovoltaic power prediction

Jie Chen · Tian Peng · Shijie Qian · Yida Ge 等7人 · Applied Energy · 2025年1月 · Vol.377

准确的光伏发电功率预测对于电网的稳定运行和合理调度至关重要。然而,由于光伏发电具有不稳定性,其功率预测仍面临巨大挑战。为此,本文提出一种结合二次分解、贝叶斯优化与误差校正机制的Autoformer模型用于光伏发电功率预测。为降低数据复杂性并充分提取特征,采用了两种分解方法:首先利用经验模态分解(EMD)对光伏功率序列进行初级分解;然后引入样本熵(SE)衡量各分量的复杂度,并对复杂度最高的分量采用变分模态分解(VMD)进行二次分解。其次,构建基于贝叶斯优化算法优化的Autoformer模型,分别预...

解读: 该基于深度学习的光伏功率预测技术对阳光电源iSolarCloud智慧运维平台具有重要应用价值。通过EMD-VMD二次分解和Autoformer模型可显著提升预测精度,可集成至SG系列逆变器的MPPT优化算法中,实现更精准的发电功率预测。结合ST系列储能PCS,该预测模型能优化储能系统充放电策略,提升...