找到 1 条结果 · Applied Energy
基于有限数据的分布式区域光伏功率预测:一种鲁棒的自回归迁移学习方法
Distributed-regional photovoltaic power generation prediction with limited data: A robust autoregressive transfer learning method
Wanting Zheng · Hao Xiao · Wei Pei · Applied Energy · 2025年1月 · Vol.380
摘要 本文提出了一种针对高比例数据缺失场景下的分布式区域光伏发电功率预测方法。该方法通过两个关键策略增强光伏发电信息的可用性。首先,针对区域内具有有限可用光伏发电数据的参考电站,构建了一种基于DSC-LightGBM算法的可解释性预测模型,以提高光伏发电功率预测的准确性。针对这些电站在气象数据获取方面存在的不足,通过物理建模引入太阳高度角和太阳时角等太阳辐射特征,并采用Shapley加性解释(SHAP)可解释算法分析原始特征与增强特征的重要性。其次,为解决区域内大量非参考电站在实际运行中数据匮乏...
解读: 该分布式光伏功率预测技术对阳光电源iSolarCloud智慧运维平台具有重要应用价值。针对区域内大量电站数据缺失场景,其自回归迁移学习方法可显著提升SG系列逆变器集群的发电预测精度(误差降低25.8%-50.3%)。DSC-LightGBM算法结合太阳高度角等物理特征的建模思路,可优化PowerTi...