找到 1 条结果 · Applied Energy
基于鲁棒深度强化学习的考虑输电网电压波动的多馈线配电网分布式电压控制
Distributed voltage control for multi-feeder distribution networks considering transmission network voltage fluctuation based on robust deep reinforcement learning
Zhi Wu · Yiqi Li · Xiao Zhang · Shu Zheng 等5人 · Applied Energy · 2025年1月 · Vol.379
摘要 在多馈线配电网中,区域间光伏出力与负荷需求的功率平衡问题更加复杂。为解决上述问题,本文提出一种基于鲁棒深度强化学习的多智能体分布式电压控制策略,以降低电压偏差。将整个多馈线配电网划分为主智能体和多个子智能体,建立了一种考虑输电网电压波动及其对应功率波动的多智能体分布式电压控制模型。主智能体基于子智能体上传的信息,将输电网电压波动及相应功率波动的不确定性建模为对系统状态的扰动,并采用鲁棒深度强化学习方法确定有载调压变压器分接头的位置。进一步地,各子智能体利用二阶锥松弛技术调节每条馈线上逆变器...
解读: 该多馈线分布式电压控制技术对阳光电源ST系列储能变流器和SG系列光伏逆变器具有重要应用价值。论文提出的主从代理架构可应用于iSolarCloud平台,实现毫秒级电压调节决策。鲁棒深度强化学习方法可增强PowerTitan储能系统应对电网电压波动的能力,二阶锥松弛技术优化逆变器无功输出与阳光电源现有M...