找到 2 条结果 · Applied Energy
水风光混合系统中现有水电站扩容优化的解析方法:以雅砻江流域为例
Analytical method for optimizing capacity expansion of existing hydropower plants in hydro-wind-photovoltaic hybrid system: A case study in the Yalong River basin
Chen Wu · Pan Liu · Qian Cheng · Zhikai Yang 等11人 · Applied Energy · 2025年1月 · Vol.383
摘要 水电可通过构建水-风-光混合能源系统,有效整合具有间歇性的风电和光伏(PV)发电。随着风电和光伏电站规模的不断扩大,扩大水电装机容量变得尤为关键。然而,传统的扩容数值方法需要高时间分辨率的输入数据以及复杂的模拟计算。为解决这一问题,本文提出一种无需高分辨率输入数据的解析方法,用于推导水电站最优扩容规模,便于实际应用并支持敏感性分析。首先,基于历史运行数据,分别采用多项式函数和线性函数对水电出力及风电-光伏弃电率随水电扩容规模的变化关系进行估计;其次,结合净现值法,建立考虑总发电量(包括水电...
解读: 该水风光混合系统容量优化方法对阳光电源具有重要参考价值。研究揭示的弃电率与容量扩展关系,可指导我们ST系列储能系统在水风光互补场景的容量配置策略。文中敏感性分析方法(电价敏感度为运维成本11倍)可应用于PowerTitan储能电站的经济性评估模型。特别是无需高时间分辨率数据的解析法,可集成到iSol...
风电场在中长期滚动交易中的策略性投标:一种双层多智能体深度强化学习方法
Strategic bidding of wind farms in medium-to-long-term rolling transactions: A bi-level multi-agent deep reinforcement learning approach
Yi Zheng · Jian Wang · Chengmin Wang · Chunyi Huang 等6人 · Applied Energy · 2025年1月 · Vol.383
摘要 随着可再生能源在电力市场中渗透率的不断提高,边际电价受到抑制,给风电生产商的盈利能力带来了挑战。为此,有效的中长期(MLT)滚动交易能够对冲现货市场价格风险,提升盈利水平。然而,传统的投标方法往往难以捕捉风电出力及交易动态在较长时间跨度内的复杂不确定性。本文提出了一种专为优化风电中长期滚动交易而设计的双层多智能体深度强化学习(DRL)方法。该方法创新性地将Black–Scholes模型与Hamiltonian函数相结合,构建了一个最优决策框架,能够在短期投标效率与长期战略定位之间实现平衡。...
解读: 该深度强化学习竞价策略对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。通过双层多智能体优化框架,可提升风储联合系统在中长期电力市场的收益能力,有效对冲现货价格风险。其时空建模技术可集成至iSolarCloud平台,实现储能参与市场交易的智能决策,优化充放电策略。结合阳光电...