找到 3 条结果 · Applied Energy
基于随机森林可解释人工智能揭示储能与可再生能源在脱碳进程中的协同作用
Understanding the synergy of energy storage and renewables in decarbonization via random forest-based explainable AI
Zili Chen · Zhaoyuan Wu · Lanyi Wei · Linyan Yang 等6人 · Applied Energy · 2025年1月 · Vol.390
摘要 可再生能源(RE)与储能系统(ESS)的协调发展对于低碳转型至关重要。除了最优规划方案外,理解规划结果背后的深层原因对于提升决策透明度与可靠性同样关键。本研究探讨了在不同脱碳阶段中可再生能源与中长期储能(MTES)之间协同关系的演变过程,提出了一种可解释的分析框架,用于归因并分析影响规划结果的关键因素。通过采用随机森林(Random Forest, RF)方法,该框架识别出在不同边界条件下(如碳排放限额、资源禀赋和经济约束)驱动可再生能源—储能协同效应的核心因素,从而深入揭示时间与空间因素...
解读: 该研究对阳光电源储能规划具有重要指导意义。研究揭示长时储能(LDES>100h)在新能源富集区域的季节性平衡价值,与PowerTitan液流储能系统的应用场景高度契合;短时储能在火电主导区域应对日内波动的需求,可通过ST系列PCS的快速响应能力实现。随机森林可解释性框架可集成至iSolarCloud...
中国废弃光伏分布的时空演化及能源-经济-环境-社会可持续效益综合评估
Spatiotemporal evolution of decommissioned photovoltaic distribution and integrated energy-economic-environmental-social sustainable benefit assessment in China
Jianli Zhou · Zihan Xu · Juan He · Dandan Liu 等8人 · Applied Energy · 2025年1月 · Vol.384
摘要 准确而详细地掌握中国废弃光伏(PV)系统在时间和空间上的分布特征,并结合对回收再利用这些废弃光伏组件所带来可持续性效益的全面评估,对于有效应对我国即将迎来的大规模光伏退役潮具有重要意义。目前,关于中国废弃光伏在时空分布及其回收利用方面的研究仍显不足。本研究采用随机森林与BP神经网络方法构建预测模型,刻画了2024年至2050年八种情景下废弃光伏的时空演化趋势,并从能源、经济、环境和社会四个维度对其可持续效益进行了综合评估。通过模糊层次分析法(FAHP)、基于指标间相关性的权重确定法(CRI...
解读: 该研究对阳光电源光储回收业务具有战略价值。2050年退役光伏将达670-1600GW,形成万亿级市场。阳光电源可结合iSolarCloud平台建立退役组件全生命周期追踪系统,为山东、河北等重点区域提前布局储能替代方案。ST系列储能系统可利用梯次利用组件降低成本,SG逆变器产品线需考虑模块化设计以延长...
钙钛矿材料与太阳能电池的数字化制造
Digital manufacturing of perovskite materials and solar cells
Zixuan Wangabc1 · Zijian Chenbcd1 · Boyuan Wangbc1 · Chuang Wu 等12人 · Applied Energy · 2025年1月 · Vol.377
摘要 与已发展了半个世纪的晶硅电池相比,钙钛矿太阳能电池(PSCs)的光伏转换效率在短短15年内已超过26%,成为当前备受关注的研究热点。然而,传统研究方法在应对钙钛矿材料(PVKs)成分多样、合成复杂以及需精确调控性能等方面面临诸多挑战。本综述系统阐述了钙钛矿材料在数字化制造方面的最新研究进展,重点涵盖实验室自动化、数据驱动的理性设计、高通量实验以及机器学习(ML)算法等方向。首先,论述了实验室自动化在显著提升实验效率与可重复性方面的重要作用;其次,强调了数据驱动方法在指导钙钛矿材料及器件理性...
解读: 钙钛矿电池数字化制造技术对阳光电源光伏逆变器产品线具有前瞻价值。该技术通过机器学习和高通量实验加速新型光伏材料开发,其26%转换效率已接近晶硅电池。阳光电源SG系列逆变器可提前布局钙钛矿电池适配性研究,针对其独特的IV特性优化MPPT算法;iSolarCloud平台可集成数据驱动方法,实现钙钛矿组件...