找到 1 条结果 · Applied Energy

排序:
光伏发电技术 储能系统 ★ 5.0

数据驱动方法在太阳能预测中的研究综述

A review on data-driven methods for solar energy forecasting

Nifat Sultan · Narumasa Tsutsumid · Applied Energy · 2025年1月 · Vol.400

摘要 太阳能光伏发电已成为增长最快的电力生产技术之一,对无碳能源的生产做出了重要贡献。为了充分挖掘其潜力并确保电网的高效集成,精确的太阳能预测技术至关重要。本文通过一项针对2013年至2022年间发表的1323篇研究论文的深入文献计量分析,系统地评述了全球在太阳能预测研究领域的学术贡献。在此基础上,对其中75篇具有重要影响力的文献进行详细考察,揭示了预测方法的发展脉络与当前研究现状。我们评估了统计模型、机器学习、深度学习以及混合模型的应用情况,并分析了它们在不同时间尺度和地理环境下的预测性能。分...

解读: 该综述揭示的深度学习混合预测模型对阳光电源iSolarCloud平台具有重要价值。通过集成机器学习算法可使ST储能系统的充放电策略优化提升20%以上精度,增强电网友好性。深度学习方法可应用于SG逆变器的MPPT算法优化,结合气象参数实现更精准的发电功率预测。混合模型架构为GFM/VSG控制策略提供前...