找到 1 条结果 · Applied Energy

排序:
光伏发电技术 储能系统 SiC器件 机器学习 ★ 5.0

物理引导的机器学习利用稀疏、异构的公开数据预测全球太阳能电站性能

Physics-guided machine learning predicts the planet-scale performance of solar farms with sparse, heterogeneous, public data

Jabir Bin Jahangi · Muhammad Ashraful Alam · Applied Energy · 2025年1月 · Vol.396

摘要 光伏(PV)技术格局正在迅速演变。为了预测新兴光伏技术的潜力和可扩展性,必须对这些系统在全球范围内的性能有全面的理解。传统上,大型国家级研究机构的实验和计算研究主要关注特定区域气候条件下的光伏性能。然而,将这些区域性研究结果综合起来以理解其全球性能潜力已被证明十分困难。鉴于获取实验数据的成本高昂,在政治分裂的世界中协调各国国家实验室开展实验存在挑战,以及大型商业运营商的数据隐私顾虑,人们迫切需要一种根本不同且数据效率更高的方法。本文提出了一种面向光伏的物理引导机器学习(PGML)方法,证明...

解读: 该物理引导机器学习方法对阳光电源全球化布局具有重要价值。通过PVZones气候分区和稀疏数据预测全球光伏性能,可优化SG系列逆变器的区域适配策略和MPPT算法参数。结合iSolarCloud平台,该技术能以少量站点数据预测不同气候区的发电潜力,指导ST储能系统容量配置,降低新市场前期勘测成本。数据高...